Skip to content

Commit

Permalink
add complex polygamma and Hurwitz zeta functions (fixes JuliaLang#7033)
Browse files Browse the repository at this point in the history
  • Loading branch information
stevengj committed Jun 5, 2014
1 parent ff6bde7 commit bc6536c
Show file tree
Hide file tree
Showing 4 changed files with 341 additions and 299 deletions.
27 changes: 27 additions & 0 deletions base/math.jl
Original file line number Diff line number Diff line change
Expand Up @@ -48,6 +48,33 @@ macro horner(x, p...)
ex
end

# Evaluate p[1] + z*p[2] + z^2*p[3] + ... + z^(n-1)*p[n], assuming
# the p[k] are *real* coefficients. This uses Horner's method if z
# is real, but for complex z it uses a more efficient algorithm described
# in Knuth, TAOCP vol. 2, section 4.6.4, equation (3).
macro chorner(z, p...)
a = :($(esc(p[end])))
b = :($(esc(p[end-1])))
as = {}
for i = length(p)-2:-1:1
ai = symbol(string("a", i))
push!(as, :($ai = $a))
a = :($b + r*$ai)
b = :($(esc(p[i])) - s * $ai)
end
ai = :a0
push!(as, :($ai = $a))
C = Expr(:block,
:(x = real($(esc(z)))),
:(y = imag($(esc(z)))),
:(r = x + x),
:(s = x*x + y*y),
as...,
:(Complex($ai * x + $b, $ai * y)))
R = Expr(:macrocall, symbol("@horner"), esc(z), p...)
:(isa($(esc(z)), Real) ? $R : $C)
end

rad2deg(z::Real) = oftype(z, 57.29577951308232*z)
deg2rad(z::Real) = oftype(z, 0.017453292519943295*z)
rad2deg(z::Integer) = rad2deg(float(z))
Expand Down
Loading

0 comments on commit bc6536c

Please sign in to comment.