Skip to content

Commit

Permalink
Merge pull request JuliaLang#16702 from stevengj/A_mul_doc
Browse files Browse the repository at this point in the history
improvements to A_mul_B! section of the manual
  • Loading branch information
andreasnoack authored Jul 7, 2016
2 parents 36d36b0 + ad28f9d commit 5331948
Show file tree
Hide file tree
Showing 5 changed files with 210 additions and 129 deletions.
2 changes: 2 additions & 0 deletions base/exports.jl
Original file line number Diff line number Diff line change
Expand Up @@ -267,6 +267,7 @@ export
A_rdiv_Bc,
A_rdiv_Bt,
Ac_ldiv_B,
Ac_ldiv_B!,
Ac_ldiv_Bc,
Ac_mul_B,
Ac_mul_B!,
Expand All @@ -275,6 +276,7 @@ export
Ac_rdiv_B,
Ac_rdiv_Bc,
At_ldiv_B,
At_ldiv_B!,
At_ldiv_Bt,
At_mul_B,
At_mul_B!,
Expand Down
38 changes: 38 additions & 0 deletions base/linalg/factorization.jl
Original file line number Diff line number Diff line change
Expand Up @@ -41,3 +41,41 @@ for (f1, f2) in ((:\, :A_ldiv_B!),
end
end
end

# support the same 3-arg idiom as in our other in-place A_*_B functions:
for f in (:A_ldiv_B!, :Ac_ldiv_B!, :At_ldiv_B!)
@eval $f(Y::AbstractVecOrMat, A::Factorization, B::AbstractVecOrMat) =
$f(A, copy!(Y, B))
end

"""
A_ldiv_B!([Y,] A, B) -> Y
Compute `A \ B` in-place and store the result in `Y`, returning the result.
If only two arguments are passed, then `A_ldiv_B!(A, B)` overwrites `B` with
the result.
The argument `A` should *not* be a matrix. Rather, instead of matrices it should be a
factorization object (e.g. produced by [`factorize`](:func:`factorize`) or [`cholfact`](:func:`cholfact`)).
The reason for this is that factorization itself is both expensive and typically allocates memory
(although it can also be done in-place via, e.g., [`lufact`](:func:`lufact`)),
and performance-critical situations requiring `A_ldiv_B!` usually also require fine-grained
control over the factorization of `A`.
"""
A_ldiv_B!

"""
Ac_ldiv_B!([Y,] A, B) -> Y
Similar to [`A_ldiv_B!`](:func:`A_ldiv_B!`), but return ``Aᴴ`` \\ ``B``,
computing the result in-place in `Y` (or overwriting `B` if `Y` is not supplied).
"""
Ac_ldiv_B!

"""
At_ldiv_B!([Y,] A, B) -> Y
Similar to [`A_ldiv_B!`](:func:`A_ldiv_B!`), but return ``Aᵀ`` \\ ``B``,
computing the result in-place in `Y` (or overwriting `B` if `Y` is not supplied).
"""
At_ldiv_B!
2 changes: 2 additions & 0 deletions base/linalg/linalg.jl
Original file line number Diff line number Diff line change
Expand Up @@ -147,6 +147,7 @@ export
A_rdiv_Bt,
Ac_ldiv_B,
Ac_ldiv_Bc,
Ac_ldiv_B!,
Ac_mul_B,
Ac_mul_B!,
Ac_mul_Bc,
Expand All @@ -155,6 +156,7 @@ export
Ac_rdiv_Bc,
At_ldiv_B,
At_ldiv_Bt,
At_ldiv_B!,
At_mul_B,
At_mul_B!,
At_mul_Bt,
Expand Down
174 changes: 168 additions & 6 deletions doc/stdlib/linalg.rst
Original file line number Diff line number Diff line change
Expand Up @@ -1459,17 +1459,180 @@ Linear algebra functions in Julia are largely implemented by calling functions f

If the keyword argument ``parallel`` is set to ``true``\ , ``peakflops`` is run in parallel on all the worker processors. The flop rate of the entire parallel computer is returned. When running in parallel, only 1 BLAS thread is used. The argument ``n`` still refers to the size of the problem that is solved on each processor.

Low-level matrix operations
---------------------------

Matrix operations involving transpositions operations like ``A' \ B`` are converted
by the Julia parser into calls to specially named functions like ``Ac_ldiv_B``.
If you want to overload these operations for your own types, then it is useful
to know the names of these functions.

Also, in many cases there are in-place versions of matrix operations that
allow you to supply a pre-allocated output vector or matrix. This is useful
when optimizing critical code in order to avoid the overhead of repeated allocations.
These in-place operations are suffixed with ``!`` below (e.g. ``A_mul_B!``)
according to the usual Julia convention.

.. function:: A_ldiv_B!([Y,] A, B) -> Y

.. Docstring generated from Julia source
Compute ``A B`` in-place and store the result in ``Y``\ , returning the result. If only two arguments are passed, then ``A_ldiv_B!(A, B)`` overwrites ``B`` with the result.

The argument ``A`` should *not* be a matrix. Rather, instead of matrices it should be a factorization object (e.g. produced by :func:`factorize` or :func:`cholfact`\ ). The reason for this is that factorization itself is both expensive and typically allocates memory (although it can also be done in-place via, e.g., :func:`lufact`\ ), and performance-critical situations requiring ``A_ldiv_B!`` usually also require fine-grained control over the factorization of ``A``\ .

.. function:: A_ldiv_Bc(A, B)

.. Docstring generated from Julia source
For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`A` \\ :math:`Bᴴ`\ .

.. function:: A_ldiv_Bt(A, B)

.. Docstring generated from Julia source
For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`A` \\ :math:`Bᵀ`\ .

.. function:: A_mul_B!(Y, A, B) -> Y

.. Docstring generated from Julia source
Calculates the matrix-matrix or matrix-vector product :math:`A⋅B` and stores the result in ``Y``\ , overwriting the existing value of ``Y``\ . Note that ``Y`` must not be aliased with either ``A`` or ``B``\ .

.. doctest::

julia> A=[1.0 2.0; 3.0 4.0]; B=[1.0 1.0; 1.0 1.0]; Y = similar(B); A_mul_B!(Y, A, B);

julia> Y
2×2 Array{Float64,2}:
3.0 3.0
7.0 7.0

.. function:: A_mul_Bc(A, B)

.. Docstring generated from Julia source
For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`A⋅Bᴴ`\ .

.. function:: A_mul_Bt(A, B)

.. Docstring generated from Julia source
For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`A⋅Bᵀ`\ .

.. function:: A_rdiv_Bc(A, B)

.. Docstring generated from Julia source
For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`A / Bᴴ`\ .

.. function:: A_rdiv_Bt(A, B)

.. Docstring generated from Julia source
For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`A / Bᵀ`\ .

.. function:: Ac_ldiv_B(A, B)

.. Docstring generated from Julia source
For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᴴ` \\ :math:`B`\ .

.. function:: Ac_ldiv_B!([Y,] A, B) -> Y

.. Docstring generated from Julia source
Similar to :func:`A_ldiv_B!`\ , but return :math:`Aᴴ` \\ :math:`B`\ , computing the result in-place in ``Y`` (or overwriting ``B`` if ``Y`` is not supplied).

.. function:: Ac_ldiv_Bc(A, B)

.. Docstring generated from Julia source
For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᴴ` \\ :math:`Bᴴ`\ .

.. function:: Ac_mul_B(A, B)

.. Docstring generated from Julia source
For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᴴ⋅B`\ .

.. function:: Ac_mul_Bc(A, B)

.. Docstring generated from Julia source
For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᴴ Bᴴ`\ .

.. function:: Ac_rdiv_B(A, B)

.. Docstring generated from Julia source
For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᴴ / B`\ .

.. function:: Ac_rdiv_Bc(A, B)

.. Docstring generated from Julia source
For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᴴ / Bᴴ`\ .

.. function:: At_ldiv_B(A, B)

.. Docstring generated from Julia source
For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᵀ` \\ :math:`B`\ .

.. function:: At_ldiv_B!([Y,] A, B) -> Y

.. Docstring generated from Julia source
Similar to :func:`A_ldiv_B!`\ , but return :math:`Aᵀ` \\ :math:`B`\ , computing the result in-place in ``Y`` (or overwriting ``B`` if ``Y`` is not supplied).

.. function:: At_ldiv_Bt(A, B)

.. Docstring generated from Julia source
For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᵀ` \\ :math:`Bᵀ`\ .

.. function:: At_mul_B(A, B)

.. Docstring generated from Julia source
For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᵀ⋅B`\ .

.. function:: At_mul_Bt(A, B)

.. Docstring generated from Julia source
For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᵀ⋅Bᵀ`\ .

.. function:: At_rdiv_B(A, B)

.. Docstring generated from Julia source
For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᵀ / B`\ .

.. function:: At_rdiv_Bt(A, B)

.. Docstring generated from Julia source
For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᵀ / Bᵀ`\ .

BLAS Functions
--------------

.. module:: Base.LinAlg.BLAS

:mod:`Base.LinAlg.BLAS` provides wrappers for some of the BLAS functions for
linear algebra. Those BLAS functions that overwrite one of the input
arrays have names ending in ``'!'``.
In Julia (as in much of scientific computation), dense linear-algebra operations are
based on the `LAPACK library <http://www.netlib.org/lapack/>`_, which in turn
is built on top of basic linear-algebra building-blocks known as the
`BLAS <http://www.netlib.org/blas/>`_. There are highly optimized implementations
of BLAS available for every computer architecture, and sometimes in
high-performance linear algebra routines it is useful to call the BLAS
functions directly.

Usually a function has 4 methods defined, one each for ``Float64``,
``Float32``, ``Complex128`` and ``Complex64`` arrays.
:mod:`Base.LinAlg.BLAS` provides wrappers for some of the BLAS functions.
Those BLAS functions that overwrite one of the input
arrays have names ending in ``'!'``. Usually, a BLAS function has four methods defined,
for ``Float64``, ``Float32``, ``Complex128``, and ``Complex64`` arrays.

.. currentmodule:: Base.LinAlg.BLAS

Expand Down Expand Up @@ -2362,4 +2525,3 @@ set of functions in future releases.
Solves the Sylvester matrix equation ``A * X +/- X * B = scale*C`` where ``A`` and ``B`` are both quasi-upper triangular. If ``transa = N``\ , ``A`` is not modified. If ``transa = T``\ , ``A`` is transposed. If ``transa = C``\ , ``A`` is conjugate transposed. Similarly for ``transb`` and ``B``\ . If ``isgn = 1``\ , the equation ``A * X + X * B = scale * C`` is solved. If ``isgn = -1``\ , the equation ``A * X - X * B = scale * C`` is solved.

Returns ``X`` (overwriting ``C``\ ) and ``scale``\ .

123 changes: 0 additions & 123 deletions doc/stdlib/math.rst
Original file line number Diff line number Diff line change
Expand Up @@ -478,129 +478,6 @@ Mathematical Operators
Short-circuiting boolean OR.

.. function:: A_ldiv_Bc(A, B)

.. Docstring generated from Julia source
For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`A` \\ :math:`Bᴴ`\ .

.. function:: A_ldiv_Bt(A, B)

.. Docstring generated from Julia source
For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`A` \\ :math:`Bᵀ`\ .

.. function:: A_mul_B!(Y, A, B) -> Y

.. Docstring generated from Julia source
Calculates the matrix-matrix or matrix-vector product :math:`A⋅B` and stores the result in ``Y``\ , overwriting the existing value of ``Y``\ . Note that ``Y`` must not be aliased with either ``A`` or ``B``\ .

.. doctest::

julia> A=[1.0 2.0; 3.0 4.0]; B=[1.0 1.0; 1.0 1.0]; Y = similar(B); A_mul_B!(Y, A, B);

julia> Y
2×2 Array{Float64,2}:
3.0 3.0
7.0 7.0

.. function:: A_mul_Bc(A, B)

.. Docstring generated from Julia source
For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`A⋅Bᴴ`\ .

.. function:: A_mul_Bt(A, B)

.. Docstring generated from Julia source
For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`A⋅Bᵀ`\ .

.. function:: A_rdiv_Bc(A, B)

.. Docstring generated from Julia source
For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`A / Bᴴ`\ .

.. function:: A_rdiv_Bt(A, B)

.. Docstring generated from Julia source
For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`A / Bᵀ`\ .

.. function:: Ac_ldiv_B(A, B)

.. Docstring generated from Julia source
For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᴴ` \\ :math:`B`\ .

.. function:: Ac_ldiv_Bc(A, B)

.. Docstring generated from Julia source
For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᴴ` \\ :math:`Bᴴ`\ .

.. function:: Ac_mul_B(A, B)

.. Docstring generated from Julia source
For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᴴ⋅B`\ .

.. function:: Ac_mul_Bc(A, B)

.. Docstring generated from Julia source
For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᴴ Bᴴ`\ .

.. function:: Ac_rdiv_B(A, B)

.. Docstring generated from Julia source
For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᴴ / B`\ .

.. function:: Ac_rdiv_Bc(A, B)

.. Docstring generated from Julia source
For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᴴ / Bᴴ`\ .

.. function:: At_ldiv_B(A, B)

.. Docstring generated from Julia source
For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᵀ` \\ :math:`B`\ .

.. function:: At_ldiv_Bt(A, B)

.. Docstring generated from Julia source
For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᵀ` \\ :math:`Bᵀ`\ .

.. function:: At_mul_B(A, B)

.. Docstring generated from Julia source
For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᵀ⋅B`\ .

.. function:: At_mul_Bt(A, B)

.. Docstring generated from Julia source
For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᵀ⋅Bᵀ`\ .

.. function:: At_rdiv_B(A, B)

.. Docstring generated from Julia source
For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᵀ / B`\ .

.. function:: At_rdiv_Bt(A, B)

.. Docstring generated from Julia source
For matrices or vectors :math:`A` and :math:`B`\ , calculates :math:`Aᵀ / Bᵀ`\ .

Mathematical Functions
----------------------

Expand Down

0 comments on commit 5331948

Please sign in to comment.