Skip to content

Semi-supervised clustering via Markov Aggregation using pairwise constraints. Paper on arxiv: https://arxiv.org/abs/2112.09397

Notifications You must be signed in to change notification settings

stegsoph/Constrained-Markov-Clustering

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Abstract: We connect the problem of semi-supervised clustering to constrained Markov aggregation, i.e., the task of partitioning the state space of a Markov chain. We achieve this connection by considering every data point in the dataset as an element of the Markov chain’s state space, by defining the transition probabilities between states via similarities between corresponding data points, and by incorporating semi-supervision information as hard constraints in a Hartigan-style algorithm. The introduced Constrained Markov Clustering (CoMaC) is an extension of a recent informationtheoretic framework for (unsupervised) Markov aggregation to the semi-supervised case. Instantiating CoMaC for certain parameter settings further generalizes two previous information-theoretic objectives for unsupervised clustering. Our results indicate that CoMaC is competitive with the state-of-the-art. (https://arxiv.org/abs/2112.09397)

Requirements

The code was implemented in python3 version == 3.8 with the following packages:

scipy==1.6.2
scikit-learn==0.24.1
pandas==1.2.4
numpy==1.20.1
pathlib2==2.3.5
matplotlib==3.3.4

Usage

An example usage of the sequential and annealing clustering algorithm is shown in \notebooks\CoMaC-demo.ipynb.

About

Semi-supervised clustering via Markov Aggregation using pairwise constraints. Paper on arxiv: https://arxiv.org/abs/2112.09397

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published