About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Multiply two double-precision complex floating-point numbers.
npm install @stdlib/complex-float64-base-mul
Alternatively,
- To load the package in a website via a
script
tag without installation and bundlers, use the ES Module available on theesm
branch (see README). - If you are using Deno, visit the
deno
branch (see README for usage intructions). - For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the
umd
branch (see README).
The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.
To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
var mul = require( '@stdlib/complex-float64-base-mul' );
Multiplies two double-precision complex floating-point numbers.
var Complex128 = require( '@stdlib/complex-float64-ctor' );
var real = require( '@stdlib/complex-float64-real' );
var imag = require( '@stdlib/complex-float64-imag' );
var z1 = new Complex128( 5.0, 3.0 );
var z2 = new Complex128( -2.0, 1.0 );
var v = mul( z1, z2 );
// returns <Complex128>
var re = real( v );
// returns -13.0
var im = imag( v );
// returns -1.0
The function supports the following parameters:
- z1: first complex number.
- z2: second complex number.
Multiplies two double-precision complex floating-point numbers and assigns results to a provided output array.
var Float64Array = require( '@stdlib/array-float64' );
var out = new Float64Array( 2 );
var v = mul.assign( 5.0, 3.0, -2.0, 1.0, out, 1, 0 );
// returns <Float64Array>[ -13.0, -1.0 ]
var bool = ( out === v );
// returns true
The function supports the following parameters:
- re1: real component of the first complex number.
- im1: imaginary component of the first complex number.
- re2: real component of the second complex number.
- im2: imaginary component of the second complex number.
- out: output array.
- strideOut: stride length for
out
. - offsetOut: starting index for
out
.
Multiplies two double-precision complex floating-point numbers stored in real-valued strided array views and assigns results to a provided strided output array.
var Float64Array = require( '@stdlib/array-float64' );
var z1 = new Float64Array( [ 5.0, 3.0 ] );
var z2 = new Float64Array( [ -2.0, 1.0 ] );
var out = new Float64Array( 2 );
var v = mul.strided( z1, 1, 0, z2, 1, 0, out, 1, 0 );
// returns <Float64Array>[ -13.0, -1.0 ]
var bool = ( out === v );
// returns true
The function supports the following parameters:
- z1: first complex number strided array view.
- sz1: stride length for
z1
. - oz1: starting index for
z1
. - z2: second complex number strided array view.
- sz2: stride length for
z2
. - oz2: starting index for
z2
. - out: output array.
- so: stride length for
out
. - oo: starting index for
out
.
var Complex128 = require( '@stdlib/complex-float64-ctor' );
var discreteUniform = require( '@stdlib/random-base-discrete-uniform' ).factory;
var mul = require( '@stdlib/complex-float64-base-mul' );
var rand = discreteUniform( -50, 50 );
var z1;
var z2;
var z3;
var i;
for ( i = 0; i < 100; i++ ) {
z1 = new Complex128( rand(), rand() );
z2 = new Complex128( rand(), rand() );
z3 = mul( z1, z2 );
console.log( '(%s) * (%s) = %s', z1.toString(), z2.toString(), z3.toString() );
}
#include "stdlib/complex/float64/base/mul.h"
Multiplies two double-precision complex floating-point numbers.
#include "stdlib/complex/float64/ctor.h"
#include "stdlib/complex/float64/real.h"
#include "stdlib/complex/float64/imag.h"
stdlib_complex128_t z1 = stdlib_complex128( 5.0, 3.0 );
stdlib_complex128_t z2 = stdlib_complex128( -2.0, 1.0 );
stdlib_complex128_t out = stdlib_base_complex128_mul( z1, z2 );
double re = stdlib_complex128_real( out );
// returns -13.0
double im = stdlib_complex128_imag( out );
// returns -1.0
The function accepts the following arguments:
- z1:
[in] stdlib_complex128_t
input value. - z2:
[in] stdlib_complex128_t
input value.
stdlib_complex128_t stdlib_base_complex128_mul( const stdlib_complex128_t z1, const stdlib_complex128_t z2 );
#include "stdlib/complex/float64/base/mul.h"
#include "stdlib/complex/float64/ctor.h"
#include "stdlib/complex/float64/reim.h"
#include <stdio.h>
int main( void ) {
const stdlib_complex128_t x[] = {
stdlib_complex128( 3.14, 1.5 ),
stdlib_complex128( -3.14, 1.5 ),
stdlib_complex128( 0.0, -0.0 ),
stdlib_complex128( 0.0/0.0, 0.0/0.0 )
};
stdlib_complex128_t v;
stdlib_complex128_t y;
double re;
double im;
int i;
for ( i = 0; i < 4; i++ ) {
v = x[ i ];
stdlib_complex128_reim( v, &re, &im );
printf( "z = %lf + %lfi\n", re, im );
y = stdlib_base_complex128_mul( v, v );
stdlib_complex128_reim( y, &re, &im );
printf( "mul(z, z) = %lf + %lfi\n", re, im );
}
}
@stdlib/complex-float64/base/add
: add two double-precision complex floating-point numbers.@stdlib/math-base/ops/cdiv
: divide two complex numbers.@stdlib/math-base/ops/csub
: subtract two double-precision complex floating-point numbers.
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2025. The Stdlib Authors.