Resources and code for paper "Multilingual Knowledge Graph Completion via Ensemble Knowledge Transfer"
Make sure your local environment has the following installed:
python==3.6
pandas
tensorflow==1.10.0
numpy==1.16.2
pandas==1.0.3
Install the dependents using:
pip install -r requirements.txt
python ./run.py --knowledge_model rotate --target_language ja --use_default
- You can use
--knowledge_model transe
to switch from KEnS(RotatE) to the KEnS(TransE). --target_language
could be set asja, es, el, en, fr
.--use_default
means to use the preset hyper-parameter combinations.- By default, the trained models are saved in
$PROJECT_DIR$/trained_model/kens-$KNOWLEDGE_MODEL$-$DIM$/$TARGET_LANGUAGE$
.
To set your own hyper-parameters:
python ./run.py --knowledge_model rotate --target_language ja -d 400 -b 2048 -lr 1e-2 --rotate_gamma 24 --reg_scale 1e-4 --base_align_step 5 --knowledge_step_ratio 20 --align_lr 1e-3
Download the pre-trained KEnS(RotatE) model (dimension=400) for Japanese KG: https://drive.google.com/file/d/1GJJmkStYuRVfTYXi1OvtuCwVflkKaqD0/view?usp=sharing
python ./test.py --knowledge_model rotate --target_language ja --model_dir $TRAINED_MODEL_DIR$ -d $YOUR_MODEL_DIM$
Please refer to our paper:
Xuelu Chen, Muhao Chen, Changjun Fan, Ankith Uppunda, Yizhou Sun, Carlo Zaniolo. Multilingual Knowledge Graph Completion via Ensemble Knowledge T. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings, 2020
@inproceedings{chen2020multilingual,
title={Multilingual Knowledge Graph Completion via Ensemble Knowledge Transfer},
author={Chen, Xuelu and Chen, Muhao and Fan, Changjun and Uppunda, Ankith and Sun, Yizhou and Zaniolo, Carlo},
booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings},
pages={3227--3238},
year={2020}
}