Skip to content

Commit

Permalink
average predictive value difference metric implementation Trusted-AI#376
Browse files Browse the repository at this point in the history


Trusted-AI#376 implementation

average predictive value difference metric
  • Loading branch information
sreeja-g committed Sep 16, 2022
1 parent cabb892 commit 3365bcd
Show file tree
Hide file tree
Showing 3 changed files with 75 additions and 3 deletions.
14 changes: 14 additions & 0 deletions aif360/metrics/classification_metric.py
Original file line number Diff line number Diff line change
Expand Up @@ -571,6 +571,20 @@ def average_abs_odds_difference(self):
return 0.5 * (np.abs(self.difference(self.false_positive_rate))
+ np.abs(self.difference(self.true_positive_rate)))

def average_predictive_value_difference(self):
r"""Average of difference in PPV and FOR for unprivileged and privileged
groups:
.. math::
\tfrac{1}{2}\left[(PPV_{D = \text{unprivileged}} - PPV_{D = \text{privileged}})
+ (FOR_{D = \text{unprivileged}} - FOR_{D = \text{privileged}}))\right]
A value of 0 indicates equality of chance of success.
"""
return 0.5 * (self.difference(self.positive_predictive_value)
+ self.difference(self.false_omission_rate))

def error_rate_difference(self):
r"""Difference in error rates for unprivileged and privileged groups,
:math:`ERR_{D = \text{unprivileged}} - ERR_{D = \text{privileged}}`.
Expand Down
56 changes: 54 additions & 2 deletions aif360/sklearn/metrics/metrics.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
import numpy as np
import pandas as pd
from scipy.special import rel_entr
from sklearn.metrics import make_scorer as _make_scorer, recall_score
from sklearn.metrics import make_scorer as _make_scorer, recall_score, precision_score
from sklearn.metrics import multilabel_confusion_matrix
from sklearn.metrics._classification import _prf_divide, _check_zero_division
from sklearn.neighbors import NearestNeighbors
Expand All @@ -25,7 +25,7 @@
'smoothed_selection_rate', 'generalized_fpr', 'generalized_fnr',
# group fairness
'statistical_parity_difference', 'disparate_impact_ratio',
'equal_opportunity_difference', 'average_odds_difference',
'equal_opportunity_difference', 'average_odds_difference', 'average_predictive_value_difference',
'average_odds_error', 'class_imbalance', 'kl_divergence',
'conditional_demographic_disparity', 'smoothed_edf',
'df_bias_amplification', 'mdss_bias_scan', 'mdss_bias_score',
Expand Down Expand Up @@ -344,6 +344,27 @@ def specificity_score(y_true, y_pred, *, pos_label=1, sample_weight=None,
return _prf_divide(tn, negs, 'specificity', 'negative', None,
('specificity',), zero_division).item()

def false_omission_score(y_true, y_pred, *, pos_label=1, sample_weight=None,
zero_division='warn'):
"""Compute the false omission rate.
Args:
y_true (array-like): Ground truth (correct) target values.
y_pred (array-like): Estimated targets as returned by a classifier.
pos_label (scalar, optional): The label of the positive class.
sample_weight (array-like, optional): Sample weights.
zero_division ('warn', 0 or 1): Sets the value to return when there is a
zero division. If set to “warn”, this acts as 0, but warnings are
also raised.
"""
_check_zero_division(zero_division)
MCM = multilabel_confusion_matrix(y_true, y_pred, labels=[pos_label],
sample_weight=sample_weight)
tn, fn = MCM[:, 0, 0], MCM[:, 1, 0]
negs = tn + fn
return _prf_divide(fn, negs, 'negative_predictive', 'negative', None,
('negative_predictive',), zero_division).item()

def base_rate(y_true, y_pred=None, *, pos_label=1, sample_weight=None):
r"""Compute the base rate, :math:`Pr(Y = \text{pos_label}) = \frac{P}{P+N}`.
Expand Down Expand Up @@ -649,6 +670,37 @@ def average_odds_error(y_true, y_pred, *, prot_attr=None, priv_group=None,
sample_weight=sample_weight)
return (abs(tpr_diff) + abs(fpr_diff)) / 2

def average_predictive_value_difference(y_true, y_pred, *, prot_attr=None, priv_group=1,
pos_label=1, sample_weight=None):
r"""Returns the average of the difference in positive predictive value and false omission rate for the unprivileged and privileged groups:
.. math::
\dfrac{(PPV_{D = \text{unprivileged}} - PPV_{D = \text{privileged}})
+ (FOR_{D = \text{unprivileged}} - FOR_{D = \text{privileged}})}{2}
A value of 0 indicates equality of chance of success.
Args:
y_true (pandas.Series): Ground truth (correct) target values.
y_pred (array-like): Estimated targets as returned by a classifier.
prot_attr (array-like, keyword-only): Protected attribute(s). If
``None``, all protected attributes in y_true are used.
priv_group (scalar, optional): The label of the privileged group.
pos_label (scalar, optional): The label of the positive class.
sample_weight (array-like, optional): Sample weights.
Returns:
float: Average predictive value difference.
"""
for_diff = difference(false_omission_score, y_true, y_pred,
prot_attr=prot_attr, priv_group=priv_group,
pos_label=pos_label, sample_weight=sample_weight)
ppv_diff = difference(precision_score, y_true, y_pred, prot_attr=prot_attr,
priv_group=priv_group, pos_label=pos_label,
sample_weight=sample_weight)
return (ppv_diff + for_diff) / 2

def class_imbalance(y_true, y_pred=None, *, prot_attr=None, priv_group=1,
sample_weight=None):
r"""Compute the class imbalance, :math:`\frac{N_u - N_p}{N_u + N_p}`.
Expand Down
8 changes: 7 additions & 1 deletion tests/sklearn/test_metrics.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@
consistency_score, specificity_score, selection_rate,
base_rate, smoothed_base_rate, generalized_fpr, generalized_fnr,
disparate_impact_ratio, statistical_parity_difference,
equal_opportunity_difference, average_odds_difference,
equal_opportunity_difference, average_odds_difference, average_predictive_value_difference,
average_odds_error, smoothed_edf, df_bias_amplification,
generalized_entropy_error, between_group_generalized_entropy_error,
class_imbalance, kl_divergence, conditional_demographic_disparity,
Expand Down Expand Up @@ -100,6 +100,12 @@ def test_average_odds_difference():
sample_weight=sample_weight)
assert np.isclose(aod, cm.average_odds_difference())

def test_average_predictive_value_difference():
"""Tests that the old and new average_predictive_value_difference matches exactly."""
aod = average_predictive_value_difference(y, y_pred, prot_attr='sex',
sample_weight=sample_weight)
assert np.isclose(aod, cm.average_predictive_value_difference())

def test_average_odds_error():
"""Tests that the old and new average_odds_error matches exactly."""
aoe = average_odds_error(y, y_pred, prot_attr='sex',
Expand Down

0 comments on commit 3365bcd

Please sign in to comment.