Skip to content

splinter89/fingerprint-liveness-detection

Repository files navigation

Fingerprint Liveness Detection

What's implemented

Filename Description
Feature extraction extract_features.py Convnet-features (CNN)
Data augmentation augment_data.py Horizontal flip, crop 5+5 patches
Models convnet_svm.py SVM
convnet_nn.py Neural network
imagenet_finetune.py Inception v3

CNN feature extraction requires CNN-RFW.

Inception v3 settings: samples_per_epoch=250, nb_epoch=25.

Results

Pipeline ACC ACE
BSIF + NN 85.24 14.28
AUG + BSIF + SVM 84.86 14.44
AUG + BSIF + NN 85.93 13.82
CNN-RFW + SVM 81.16 17.95
CNN-RFW + NN 81.84 18.16
Inception v3 66.60 28.93
BSIF/CNN-RFW + NN 82.85 17.15

Average classification error: ACE = (FPR + FNR)/2

Inception v3 with ImageNet weights couldn't perform well for our peculiar images of the fingerprints.

BSIF/CNN-RFW means mixed features.

Links

LivDet 2015 Fingerprint Database

The group project

References

LivDet 2015 Fingerprint Liveness Detection Competition

Review of the LivDet Competition Series: 2009 to 2015

Evaluating software-based fingerprint liveness detection using Convolutional Networks and Local Binary Patterns

D. Maltoni, D. Maio, A. Jain, and S. Prabhakar. Handbook of Fingerprint Recognition. Springer Publishing Company, 2009.