Skip to content

sondrion/SMOKE_CLASS_DETECTION

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

37 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SMOKE_CLASS_DETECTION

Table of content

Install LIBRAIRIES

Clone repo and install requirements.txt in a Python>=3.7.0 environment, including PyTorch>=1.7

git clone https://github.com/ultralytics/yolov5  # clone
cd yolov5
pip install -r requirements.txt  # install

Load Model Yolov5

Models download automatically from the latest YOLOv5 release

import torch

# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')  # or yolov5n - yolov5x6, custom

# Images
img = 'https://img.freepik.com/photos-gratuite/fumee-industrielle-dans-atmosphere_33799-3042.jpg?w=1380'  # or file, Path, PIL, OpenCV, numpy, list

# Inference
results = model(img)

# Results
results.print()  # or .show(), .save(), .crop(), .pandas(), etc.

Dataset

we imported 12336 unlabeled images from kaggle, we labeled 100 images using two classes: 'smoke low density' and 'smoke high density' The same database we found already labeled, with a single class 'smoke'.

Training

We installed wandb to visualize the results directly on the website by creating an account

%pip install -q wandb
import wandb
wandb.login()

The commands below reproduce YOLOv5 data results. Models download automatically from the latest YOLOv5 release

python train.py --data data.yaml --cfg yolov5s.yaml --weights '' --batch-size 64

Performances

Results

The model manages to detect both classes of smoke in this video

About

Project Recognizing Industrial Smoke Emissions

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published