Skip to content

Hier R-CNN: Instance-level Human Parts Detection and A New Benchmark

License

Notifications You must be signed in to change notification settings

soeaver/Hier-R-CNN

Repository files navigation

Hier-R-CNN

Official implementation of Hier R-CNN: Instance-level Human Parts Detection and A New Benchmark (under review)

In this repository, we release the COCO Human Parts dataset and Hier R-CNN code in Pytorch.

  • Hier R-CNN architecture:

  • Hier R-CNN output:

Installation

  • 8 x TITAN Xp GPU
  • pytorch1.1
  • python3.6.8

Install Hier R-CNN following INSTALL.md.

Dataset

You can download the annotations of COCO Human Parts here. And following Data to train or evaluate Hier R-CNN models.

Results and Models

Backbone LR MS training DCN Det AP Sub AP DOWNLOAD
R-50-FPN 1x No No 36.8 20.0 GoogleDrive
R-50-FPN 2x Yes No 39.3 23.2
R-50-FPN 1x No Yes 38.6 21.9
R-50-FPN 2x Yes Yes 40.6 23.0 GoogleDrive
R-101-FPN 1x No No 37.2 20.6
X-101-FPN 1x No No 38.8 22.2
X-101-FPN 2x Yes No 40.5 24.1
X-101-FPN 1x No Yes 40.3 22.9
X-101-FPN 2x Yes Yes 42.0 24.2 GoogleDrive

ImageNet pretrained weights

Training

To train a model with 8 GPUs run:

python -m torch.distributed.launch --nproc_per_node=8 tools/train_net.py --cfg cfgs/mscoco_humanparts/e2e_hier_rcnn_R-50-FPN_1x.yaml

Evaluation

multi-gpu evaluation,

python tools/test_net.py --cfg ckpts/mscoco_humanparts/e2e_hier_rcnn_R-50-FPN_1x/e2e_hier_rcnn_R-50-FPN_1x.yaml --gpu_id 0,1,2,3,4,5,6,7

single-gpu evaluation,

python tools/test_net.py --cfg ckpts/mscoco_humanparts/e2e_hier_rcnn_R-50-FPN_1x/e2e_hier_rcnn_R-50-FPN_1x.yaml --gpu_id 0

License

Hier-R-CNN is released under the MIT license.

About

Hier R-CNN: Instance-level Human Parts Detection and A New Benchmark

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published