code for IJCAI 18 paper: Grouping Attribute Recognition for Pedestrian with Joint Recurrent Learning
- python version : 3.4
- tensorflow version: >= 1.4
best rap model is: 链接: https://pan.baidu.com/s/1m_bOW2x9_fyhy8dSlPWCuw 提取码: y9ip
best peta model is: 链接: https://pan.baidu.com/s/1acNTb668IVppJyhfzop_ow 提取码: 3upe
rap TFRecord file: 链接: https://pan.baidu.com/s/15MRSqdg7izo8HgnOD2uCTQ 提取码: 85uk
dataset label file: 链接: https://pan.baidu.com/s/16D1spNxN2SjZZR5l6v22Uw 提取码: iswu
- ROI data:
use pose estimation model provided in Spindle Net (github link is https://github.com/yokattame/SpindleNet) to get region proposal data.
- put rap or peta label data and region proposal data together.
file format is:
# 0
CAM12_2014-03-05_20140305110334-20140305111754_tarid1199_frame8675_line1.png
-1 -1 -1 1 -1 1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
19.75390625 0 68 48.6875
0 28.796875 68 112.9609375
0 72.4375 68 188.8125
49.3738839286 29.6875 68 112.8125
0 31.3203125 31.921875 97.8203125
20.4285714286 85.796875 47.5714285714 186.5859375
8.18247767857 74.8125 35.3253348214 174.5625
that is
image index
attribute labels
head region coordinate
up region coordinate
down region coordinate
left arm coordinate
right arm coordinate
left leg coordinate
eight leg coordinate
- run data/build_rap_region_data.py to get tensorflow TFRecord input
- install bazel
- in root dir, run "bazel build //inception:rap_train" or "bazel build //inception:rap_test"
run command for example:
TRAIN_DIR=DIR for train models
RAP_DATA_DIR= DIR for rap tensorflow TFRecord file
MODEL_PATH=DIR for pretrained model
bazel-bin/inception/rap_train \
--train_dir="${TRAIN_DIR}" \
--data_dir="${RAP_DATA_DIR}" \
--pretrained_model_checkpoint_path="${MODEL_PATH}" \
--fine_tune=False \
--initial_learning_rate=0.1 \
--input_queue_memory_factor=1 \
--num_gpus=1 \
--max_steps=1001
TRAIN_DIR=DIR for train models
EVAL_DIR= DIR for eval event logs
RAP_DATA_DIR=DIR for rap tensorflow TFRecord file
bazel-bin/inception/rap_eval \
--eval_dir="${EVAL_DIR}" \
--data_dir="${RAP_DATA_DIR}" \
--subset=validation \
--num_examples=8317 \
--checkpoint_dir="${TRAIN_DIR}" \
--input_queue_memory_factor=1 \
--run_once