面向含噪数据流的鲁棒在线学习算法 基分类器 Logistic Linear SVM BernoulliNB Perceptron PassiveAggressiveClassifier 计算公式 Ramp_loss Calculate_Weight Parameter: $$ \eta > 0 $$ Initialize: $$ w_1 = (1/d,...,1/d) $$ $x^4$ Update rule $$ \forall i,w_{t+1}[i] = \frac{w_t[i]e^{-\eta z_t[i]}}{\sum_jw_t[j]e^{-\eta z_t[j]}} \quad \ z_t[i] = \left{ \begin{array}{lr} 0 \quad h_i(x) = y& \ 1 \quad h_i(x) \neq y & \end{array} \right. \ h_i(x)为第i个base_model的预测标签 \ \eta 为初始指定参数 $$