Skip to content

Displaced Aggregation Units for Convolutional Networks from "Spatially-Adaptive Filter Units for Deep Neural Networks" paper

Notifications You must be signed in to change notification settings

skokec/DAU-ConvNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DAU-ConvNet

Official implementation of Displaced Aggregation Units for Convolutional Networks from CVPR 2018 paper titled "Spatially-Adaptive Filter Units for Deep Neural Networks" that was developed as part of Deep Compositional Networks.

This repository is a self-contained DAU layer implementation in C++ and CUDA, plus a TensorFlow plugin. Use this library to implement DAU layers for any deep learning framework. For more details on DAUs see ViCoS research page.

Available implementations :

See below for more details on each implementation.

Citation

Please cite our CVPR 2018 paper when using DAU code:

@inproceedings{Tabernik2018,
	title = {{Spatially-Adaptive Filter Units for Deep Neural Networks}},
	author = {Tabernik, Domen and Kristan, Matej and Leonardis, Ale{\v{s}}},
	booktitle = {2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition},
	year = {2018}
	pages = {9388--9396}
}

Acknowledgment

We thank Vitjan Zavrtanik (VitjanZ) for TensorFlow C++/Python wrapper.

Caffe

A Caffe implementation based on this library is available in DAU-ConvNet-caffe repository.

Pretrained models for Caffe from CVPR 2018 papers are available:

TensorFlow

We provide TensorFlow plugin and appropriate Python wrappers that can be used to directly replace the tf.contrib.layers.conv2d function. Note, our C++/CUDA code natively supports only NCHW format for input, please update your TensorFlow models to use this format.

Requirements and dependency libraries for TensorFlow plugin:

  • Python (developed and tested on Python2.7 and Python3.5)
  • TensorFlow 1.6 or newer
  • Numpy
  • OpenBlas
  • (optional) Scipy, matplotlib and python-tk for running unit test in dau_conv_test.py

Support for TensorFlow 2 with Python 3.7 and 3.8 has been added in the latest release (see prebuild binaries below).

Instalation from pre-compiled binaries (pip)

If you are using TensorFlow from pip, then install a pre-compiled binaries (.whl) from the RELEASE:

# install dependency library (OpenBLAS)
sudo apt-get install libopenblas-dev  wget

# install dau-conv package for TensorFlow v2 with Python 3.8
export TF_VERSION=2.12.0
sudo pip install https://github.com/skokec/DAU-ConvNet/releases/download/v1.0-TF2/dau_conv-1.0_TF[TF_VERSION]-cp38-cp38-manylinux1_x86_64.whl

# install dau-conv package for TensorFlow v1 with Python 2.7 or 3.5
export TF_VERSION=1.13.1
sudo pip install https://github.com/skokec/DAU-ConvNet/releases/download/v1.0/dau_conv-1.0_TF[TF_VERSION]-cp35-cp35-manylinux1_x86_64.whl

Note that pip packages were compiled against the specific version of TensorFlow from pip that will be installed as dependency.

Pre-compiled binaries are available for the following configurations:

  • TensorFlow >=1.5 and <=1.13.1:
    • Python 2.7 and 3.5
    • Build with Ubuntu 16.04
  • TensorFlow >=1.14 and <=2.2.0:
    • Python 3.7
    • Build with Ubuntu 18.04
  • TensorFlow >=2.2.0 and <=2.12.0:
    • Python 3.8
    • Build with Ubuntu 18.04

Docker

Pre-compiled docker images for TensorFlow are also available on Docker Hub that are build using the

Dockers are build for specific python and TensorFlow version. Start docker, for instance, for Python3.5 and TensorFlow r1.13.1, using:

sudo nvidia-docker run -i -d -t skokec/tf-dau-convnet:1.0-py3.5-tf1.13.1 /bin/bash

Build and installation (TensorFlow v2)

For TensorFlow >=1.14 and <=2.12.0

  • Ubuntu 18.04
  • C++17 for TensorFlow 2.10.0 or higher
  • C++14 for TensorFlow 2.7.0 or higher
  • C++11 for TensorFlow 1.14.0 or higher
  • CMake 3.21 or newer for (tested on version 3.21)
  • CUDA SDK Toolkit (tested on version 10.0, 10.1, 11.0.3, 11.2.0, 11.8.0 )
  • BLAS (ATLAS or OpenBLAS)
  • cuBlas

Use docker script plugins/tensorflow/docker/Dockerfile.ubuntu18.04 as a reference for building the plugin from source. An example of building for Python 3.8 and TensorFlow 2.12 on Ubuntu 18.04 with pre-installed CUDA and cuBLAS (using nvidia/cuda:11.8.0-cudnn8-devel-ubuntu18.04 docker image):

apt-get update

# install build tools
apt-get install software-properties-common build-essential cmake libcurl3-dev libfreetype6-dev libpng-dev \
                libzmq3-dev pkg-config software-properties-common zlib1g-dev wget

# install dependency library (python, OpenBLAS)
apt-get install python3.8  python3.8-dev python3.8-pip libopenblas-dev

# install pip dependencies 
python3.8 -m pip install setuptools==57.5.0
python3.8 -m pip install cython numpy==1.19.5 pathlib protobuf==3.20
python3.8 -m pip install pip --upgrade
python3.8 -m pip install tensorflow==2.12

# install latest cmake (newer CUDA version do not work with default cmake in Ubuntu 18.04)
wget -q https://cmake.org/files/v3.21/cmake-3.21.3-linux-x86_64.tar.gz -O - | tar -xz -C /opt && mv /opt/cmake-3.21.3-linux-x86_64 /opt/cmake-3.21.3
export PATH=/opt/cmake-3.21.3/bin:$PATH

Then clone the repository and build from source:

git clone https://github.com/skokec/DAU-ConvNet
git submodule update --init --recursive

mkdir DAU-ConvNet/build
cd DAU-ConvNet/build

cmake -DBLAS=Open -DBUILD_TENSORFLOW_PLUGIN=on -DPYTHON_EXECUTABLE="/usr/bin/python3.8"..

make -j # creates whl file in build/plugin/tensorflow/wheelhouse
make install # will install whl package (with .so files) into python dist-packages folder 

Verify that install has been successful by importing dau_conv package:

python3.8 -c "import dau_conv"

Build and installation (TensorFlow v1)

For TensorFlow >=1.5 and <=1.13.1, rquirements and dependency libraries to compile DAU-ConvNet are:

  • Ubuntu 16.04
  • C++11
  • CMake 2.8 or newer for (tested on version 3.5)
  • CUDA SDK Toolkit (tested on version 8.0 and 9.0)
  • BLAS (ATLAS or OpenBLAS)
  • cuBlas

Use docker script plugins/tensorflow/docker/Dockerfile](https://github.com/skokec/DAU-ConvNet/blob/master/plugins/tensorflow/docker/Dockerfile) as a reference for building the plugin from source. On Ubuntu 16.04 with pre-installed CUDA and cuBLAS (e.g. using nvidia/cuda:9.0-cudnn7-devel-ubuntu16.04 or nvidia/cuda:8.0-cudnn5-devel-ubuntu16.04 docker) install dependencies first:

apt-get update
apt-get install cmake python python-pip libopenblas-dev
 
pip install tensorflow-gpu>=1.6
# Note: during instalation tensorflow package is sufficent, but during running the tensorflow-gpu is required.

Then clone the repository and build from source:

git clone https://github.com/skokec/DAU-ConvNet
git submodule update --init --recursive

mkdir DAU-ConvNet/build
cd DAU-ConvNet/build

cmake -DBLAS=Open -DBUILD_TENSORFLOW_PLUGIN=on ..

make -j # creates whl file in build/plugin/tensorflow/wheelhouse
make install # will install whl package (with .so files) into python dist-packages folder 

Unit test

To validate installation using unit tests also install scipy, matplotlib and python-tk, and then run dau_conv_test.py:

apt-get install python-tk                

# for Python 3.7 or 3.5
pip install scipy matplotlib==2.2.5

# for Python 3.8 or 3.7 
pip install scipy matplotlib==3.2.0

python -m dau_conv.test DAUConvTest.test_DAUConv

Common issues

I got undefined symbol: _ZN9perftools8gputools4cuda17AsCUDAStreamValueEPNS0_6StreamE when running the code.

Please make sure that your TensorFlow is compiled against GPU/CUDA. In pip the tensroflow and tensorflow-gpu packages provide the same libtensorflow_framework.so in the same folder but only tensorflow-gpu has the .so that is compiled against the CUDA. If tensroflow gets installed after the tensorflow-gpu then .so with CUDA support will be overriden by the .so without it. Make sure to install tensorflow-gpu the last or not to install tensroflow at all.

Usage

There are two available methods to use our DAU convolution. Using dau_conv.DAUConv2d class based on base.Layer or using wrapper dau_conv.dau_conv2d functions. See below for example on using dau_conv2d method.

NOTE: The dau_conv.dau_conv2d class supported only in TensorFlow v1 due to depricated contrib package in TensorFlow v2. Use DAUConv2d class instead in TensorFlow v2.

Method dau_conv.dau_conv2d:

# 
# Supprted only for TensorFlow v1
from dau_conv import dau_conv2d
dau_conv2d(inputs,
             filters, # number of output filters
             dau_units, # number of DAU units per image axis, e.g, (2,2) for 4 DAUs per filter 
             max_kernel_size, # maximal possible size of kernel that limits the offset of DAUs (highest value that can be used=17)  
             stride=1, # only stride=1 supported 
             mu_learning_rate_factor=500, # additional factor for gradients of mu1 and mu2
             data_format=None,
             activation_fn=tf.nn.relu,
             normalizer_fn=None,
             normalizer_params=None,
             weights_initializer=tf.random_normal_initializer(stddev=0.1), 
             weights_regularizer=None,
             mu1_initializer=None, # see below for default initialization values
             mu1_regularizer=None, # see below for default initialization values
             mu2_initializer=None,
             mu2_regularizer=None,
             sigma_initializer=None,
             sigma_regularizer=None,
             biases_initializer=tf.zeros_initializer(),
             biases_regularizer=None,
             reuse=None,
             variables_collections=None,
             outputs_collections=None,
             trainable=True,
             scope=None)

Class dau_conv.DAUConv2d:

# Supprted for TensorFlow v1 and v2
from dau_conv import DAUConv2d
DAUConv2d(filters, # number of output filters
           dau_units, # number of DAU units per image axis, e.g, (2,2) for 4 DAUs total per one filter
           max_kernel_size, # maximal possible size of kernel that limits the offset of DAUs (highest value that can be used=17)
           strides=1, # only stride=1 supported
           data_format='channels_first', # supports only 'channels_last' 
           activation=None,
           use_bias=True,
           weight_initializer=tf.random_normal_initializer(stddev=0.1),
           mu1_initializer=None, # see below for default initialization values
           mu2_initializer=None, # see below for default initialization values
           sigma_initializer=None,
           bias_initializer=tf.zeros_initializer(),
           weight_regularizer=None,
           mu1_regularizer=None,
           mu2_regularizer=None,
           sigma_regularizer=None,
           bias_regularizer=None,
           activity_regularizer=None,
           weight_constraint=None,
           mu1_constraint=None,
           mu2_constraint=None,
           sigma_constraint=None,
           bias_constraint=None,
           trainable=True,
           mu_learning_rate_factor=500, # additional factor for gradients of mu1 and mu2 
           unit_testing=False, # for competability between CPU and GPU version (where gradients of last edge need to be ignored) during unit testing
           name=None)

Mean initialization (mu1 and mu2 initializers)

Mean values (e.g. learned offsets) of DAU units are always based on (0,0) being at the center of the kernel. Default initialization (when passing None) is to arrange units equally over the available space using dau_conv.DAUGridMean initializer class:

    if self.mu1_initializer is None:
        self.mu1_initializer = DAUGridMean(dau_units=self.dau_units, max_value=np.floor(self.max_kernel_size[1]/2.0)-1, dau_unit_axis=2)
        
    if self.mu2_initializer is None:
        self.mu2_initializer = DAUGridMean(dau_units=self.dau_units, max_value=np.floor(self.max_kernel_size[0]/2.0)-1, dau_unit_axis=1)

Other TensorFlow initializer classes can be used. For instance distributing them uniformly over the center of the kernel is accomplished by:

dau_conv2d(...
          mu1_initializer = tf.random_uniform_initializer(minval=-np.floor(max_kernel_size/2.0), 
                                                          maxval=np.floor(max_kernel_size/2.0),dtype=tf.float32),
          mu2_initializer = tf.random_uniform_initializer(minval=-np.floor(max_kernel_size/2.0), 
                                                          maxval=np.floor(max_kernel_size/2.0),dtype=tf.float32), 
          ...)

Initializer dau_conv.DAUGridMean class:

dau_conv.DAUGridMean(dau_units, # number of DAU units per image axis e.g. (2,2) for 4 DAUs total 
                     max_value, # max offset 
                     dau_unit_axis=2) # axis for DAU units in input tensor where 2 => mu1, 1 => mu2, (default=2) 

Limtations and restrictions

Current implementation is limited to using only the following settings:

  • data_format = 'NCHW': only 'NCHW' format available in our C++/CUDA implementation
  • number of output channels must be at least a multiple of 16 or 32 (depending on batch size)
  • stride = 1: striding not implemented yet
  • max_kernel_size <= 65: due to pre-defined CUDA kernels max offsets are restricted to specific values:
    • max_kernel_size <= 9 and max_kernel_size <= 17: most optimal kernel implementations
    • max_kernel_size <= 33 and max_kernel_size <= 65: less optimal implementation that have additional computational penalty due to larger memory utilization
    • NOTE: selection of which CUDA kernel is used is performed based on actual offset values at each call so even setting large kernel sizes can be fast if all offset values (in each layer) are smaller than 8 pixels.

Example of code usage for TensorFlow v1

CIFAR-10 example is available here.

Example of three DAU convolutional layer and one fully connected using batch norm and L2 regularization on weights:

import tensorflow as tf

from tensorflow.contrib.framework import arg_scope

from dau_conv import dau_conv2d

with arg_scope([dau_conv2d, tf.contrib.layers.fully_connected],
                weights_regularizer=tf.contrib.layers.l2_regularizer(0.0005),
                weights_initializer=tf.contrib.layers.xavier_initializer(uniform=False),
                biases_initializer=None,
                normalizer_fn=tf.layers.batch_normalization,
                normalizer_params=dict(center=True,
                                       scale=True,
                                       momentum=0.9999, 
                                       epsilon=0.001, 
                                       axis=1, # NOTE: use axis=1 for NCHW format !!
                                       training=in_training)):
            
            inputs = ...
            
            # convert from NHWC to NCHW format
            inputs = tf.transpose(inputs, [0,3,1,2])
            
            net = dau_conv2d(inputs, 96, dau_units=(2,2), max_kernel_size=9,
                                    mu_learning_rate_factor=500, data_format='NCHW', scope='dau_conv1')
            net = tf.contrib.layers.max_pool2d(net, [2, 2], scope='pool1', data_format="NCHW")

            net = dau_conv2d(net, 96, dau_units=(2,2), max_kernel_size=9,
                                    mu_learning_rate_factor=500, data_format='NCHW', scope='dau_conv2')
            net = tf.contrib.layers(net, [2, 2], scope='pool2', data_format="NCHW")

            net = dau_conv2d(net, 192, dau_units=(2,2), max_kernel_size=9,
                                    mu_learning_rate_factor=500, data_format='NCHW', scope='dau_conv3')
            net = tf.contrib.layers.max_pool2d(net, [2, 2], scope='pool3', data_format="NCHW")
            net = tf.reshape(net, [net.shape[0], -1])

            net = tf.contrib.layers.fully_connected(net, NUM_CLASSES, scope='fc4',
                                                    activation_fn=None,
                                                    normalizer_fn=None,
                                                    biases_initializer=tf.constant_initializer(0))