Skip to content

Commit

Permalink
Create temp rt dose (didymo#312)
Browse files Browse the repository at this point in the history
* if no RT Dose present, create one with dimensions matching the volumetric image and zero for pixel values

* add MR as an SOP Class that can be used for doing a Force Link
  • Loading branch information
sjswerdloff authored Apr 20, 2024
1 parent b68393c commit d1bd762
Show file tree
Hide file tree
Showing 4 changed files with 265 additions and 7 deletions.
201 changes: 198 additions & 3 deletions src/Model/CalculateDVHs.py
Original file line number Diff line number Diff line change
@@ -1,14 +1,20 @@
import datetime
import multiprocessing

from dicompylercore.dvh import DVH
import numpy as np
import pandas as pd
import pydicom

from copy import deepcopy
from pathlib import Path
from dicompylercore.dvh import DVH
from dicompylercore import dvhcalc
from pydicom.dataset import Dataset
from pydicom.dataset import Dataset, FileMetaDataset, validate_file_meta
from pydicom.sequence import Sequence
from pydicom.tag import Tag
from pydicom.uid import generate_uid, ImplicitVRLittleEndian
from src.Model.PatientDictContainer import PatientDictContainer

from src import _version

def get_roi_info(ds_rtss):
"""
Expand Down Expand Up @@ -316,3 +322,192 @@ def rtdose2dvh():
pass

return dvh_seq


def create_initial_rtdose_from_ct(img_ds: pydicom.dataset.Dataset,
filepath: Path,
uid_list: list) -> pydicom.dataset.FileDataset:
"""
Pre-populate an RT Dose based on the volumetric image datasets.
Parameters
----------
img_ds : pydicom.dataset.Dataset
A CT or MR image that the RT Dose will be registered to
uid_list : list
list of UIDs (as strings) of the entire image volume that the
RT Dose references
filepath: str
A path where the RTDose will be saved
Returns
-------
pydicom.dataset.FileDataset
the half-baked RT Dose, ready for DVH calculations
Raises
------
ValueError
[description]
"""

if img_ds is None:
raise ValueError("No CT or MR data to initialize RT Dose")

now = datetime.datetime.now()
dicom_date = now.strftime("%Y%m%d")
dicom_time = now.strftime("%H%M")
read_data_dict = PatientDictContainer().dataset

new_image_dict = {key: value for (key, value)
in read_data_dict.items()
if str(key).isnumeric()}

displacement_dict = dict()

for i in range(1,len(new_image_dict)-1):
delta= np.array(list(map(float,new_image_dict[i].ImagePositionPatient))) - np.array(list(map(float,new_image_dict[i-1].ImagePositionPatient)))
displacement_dict[i] = delta.dot(delta)

# File Meta module
file_meta = FileMetaDataset()
file_meta.FileMetaInformationGroupLength = 238
file_meta.FileMetaInformationVersion = b'\x00\x01'
file_meta.MediaStorageSOPClassUID = '1.2.840.10008.5.1.4.1.1.481.2'
file_meta.MediaStorageSOPInstanceUID = generate_uid()
file_meta.TransferSyntaxUID = ImplicitVRLittleEndian
validate_file_meta(file_meta)

rt_dose = pydicom.dataset.FileDataset(filepath, {}, preamble=b"\0" * 128,
file_meta=file_meta)
rt_dose.fix_meta_info()

top_level_tags_to_copy: list = [Tag("PatientName"),
Tag("PatientID"),
Tag("PatientBirthDate"),
Tag("PatientSex"),
Tag("StudyDate"),
Tag("StudyTime"),
Tag("AccessionNumber"),
Tag("ReferringPhysicianName"),
Tag("StudyDescription"),
Tag("StudyInstanceUID"),
Tag("StudyID"),
Tag("RequestingService"),
Tag("PatientAge"),
Tag("PatientSize"),
Tag("PatientWeight"),
Tag("MedicalAlerts"),
Tag("Allergies"),
Tag("PregnancyStatus"),
Tag("FrameOfReferenceUID"),
Tag("PositionReferenceIndicator"),
Tag("InstitutionName"),
Tag("InstitutionAddress"),
Tag("OperatorsName")
]

for tag in top_level_tags_to_copy:
if tag in img_ds:
rt_dose[tag] = deepcopy(img_ds[tag])

if rt_dose.StudyInstanceUID == "":
raise ValueError(
"The given dataset is missing a required tag 'StudyInstanceUID'")

# RT Series Module
rt_dose.SeriesDate = dicom_date
rt_dose.SeriesTime = dicom_time
rt_dose.Modality = "RTDOSE"
rt_dose.OperatorsName = ""
rt_dose.SeriesInstanceUID = pydicom.uid.generate_uid()
rt_dose.SeriesNumber = "1"

# General Equipment Module
rt_dose.Manufacturer = "OnkoDICOM"
rt_dose.ManufacturerModelName = "OnkoDICOM"
# Pull this off the top level version for OnkoDICOM
rt_dose.SoftwareVersions = _version.__version__

# Frame of Reference module
rt_dose.FrameOfReferenceUID = img_ds.FrameOfReferenceUID
rt_dose.PositionReferenceIndicator = ""

# RT Dose module

rt_dose.DoseComment = "OnkoDICOM rtdose of " + rt_dose.StudyID
rt_dose.ContentDate = dicom_date
rt_dose.ContentTime = dicom_time
rt_dose.SamplesPerPixel = 1
rt_dose.PhotometricInterpretation = "MONOCHROME2"
rt_dose.BitsAllocated = 16
rt_dose.BitsStored = rt_dose.BitsAllocated
rt_dose.HighBit = rt_dose.BitsStored - 1
rt_dose.DoseUnits = "Gy"
rt_dose.DoseType = "PHYSICAL"
rt_dose.DoseSummationType = "PLAN"
grid_frame_offset_list = [0.0]
grid_frame_offset_list.extend(displacement_dict.values())
rt_dose.GridFrameOffsetVector = grid_frame_offset_list # need to calculate this based on the volumetric image data stack
rt_dose.DoseGridScaling = str(1.0/256.0) # The units are gray, and we have 16 bits. Use the top 8 bits for up to 256 Gy
# and leave the bottom 8 bits for fractional representation down to ~ 0.25 cGy.

# MultiFrame Module
rt_dose.NumberOfFrames = len(new_image_dict) # use same number as volumetric image slices
rt_dose.FrameIncrementPointer = 0x3004000C

# Image Pixel Module (not including elements already specified above for RT Dose module)
rt_dose.Rows = img_ds.Rows
rt_dose.Columns = img_ds.Columns
rt_dose.PixelData = bytes(2 * rt_dose.Rows * rt_dose.Columns * rt_dose.NumberOfFrames)

# Image Plane Module
rt_dose.ImagePositionPatient = new_image_dict[0].ImagePositionPatient
rt_dose.ImageOrientationPatient = img_ds.ImageOrientationPatient
rt_dose.PixelSpacing = img_ds.PixelSpacing
rt_dose.PixelRepresentation = 0

# # Contour Image Sequence
# contour_image_sequence = []
# for uid in uid_list:
# contour_image_sequence_item = pydicom.dataset.Dataset()
# contour_image_sequence_item.ReferencedSOPClassUID = img_ds.SOPClassUID
# contour_image_sequence_item.ReferencedSOPInstanceUID = uid
# contour_image_sequence.append(contour_image_sequence_item)

# # RT Referenced Series Sequence
# rt_referenced_series = pydicom.dataset.Dataset()
# rt_referenced_series.SeriesInstanceUID = img_ds.SeriesInstanceUID
# rt_referenced_series.ContourImageSequence = contour_image_sequence
# rt_referenced_series_sequence = [rt_referenced_series]

# # RT Referenced Study Sequence
# rt_referenced_study = pydicom.dataset.Dataset()
# rt_referenced_study.ReferencedSOPClassUID = "1.2.840.10008.3.1.2.3.1"
# rt_referenced_study.ReferencedSOPInstanceUID = img_ds.StudyInstanceUID
# rt_referenced_study.RTReferencedSeriesSequence = \
# rt_referenced_series_sequence
# rt_referenced_study_sequence = [rt_referenced_study]

# # RT Referenced Frame Of Reference Sequence, Structure Set Module
# referenced_frame_of_reference = pydicom.dataset.Dataset()
# referenced_frame_of_reference.FrameOfReferenceUID = \
# img_ds.FrameOfReferenceUID
# referenced_frame_of_reference.RTReferencedStudySequence = \
# rt_referenced_study_sequence
# rt_dose.ReferencedFrameOfReferenceSequence = [referenced_frame_of_reference]

# # Sequence modules
# rt_dose.StructureSetROISequence = []
# rt_dose.ROIContourSequence = []
# rt_dose.RTROIObservationsSequence = []

# SOP Common module
rt_dose.SOPClassUID = rt_dose.file_meta.MediaStorageSOPClassUID
rt_dose.SOPInstanceUID = rt_dose.file_meta.MediaStorageSOPInstanceUID

# Add required elements
rt_dose.InstanceCreationDate = dicom_date
rt_dose.InstanceCreationTime = dicom_time

rt_dose.is_little_endian = True
rt_dose.is_implicit_VR = True
return rt_dose
10 changes: 8 additions & 2 deletions src/Model/ForceLink.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,8 +60,14 @@ def force_link(frame_overwrite, file_path, dicom_array_in):
new_id = ""
new_study_id = ""
for dicom_file in dicom:
if dicom_file.FrameOfReferenceUID == frame_overwrite and \
dicom_file.SOPClassUID == src.dicom_constants.CT_IMAGE:
if (
(dicom_file.FrameOfReferenceUID == frame_overwrite)
and
(dicom_file.SOPClassUID == src.dicom_constants.CT_IMAGE
or
dicom_file.SOPClassUID == src.dicom_constants.MR_IMAGE)
):

new_id = dicom_file.FrameOfReferenceUID
new_study_id = dicom_file.StudyInstanceUID
break
Expand Down
60 changes: 58 additions & 2 deletions src/View/ImageLoader.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,10 +3,10 @@
from pathlib import Path

from PySide6 import QtCore
from pydicom import dcmread
from pydicom import dcmread, dcmwrite

from src.Model import ImageLoading
from src.Model.CalculateDVHs import dvh2rtdose, rtdose2dvh
from src.Model.CalculateDVHs import dvh2rtdose, rtdose2dvh, create_initial_rtdose_from_ct
from src.Model.PatientDictContainer import PatientDictContainer
from src.Model.ROI import create_initial_rtss_from_ct
from src.Model.xrRtstruct import create_initial_rtss_from_cr
Expand Down Expand Up @@ -103,6 +103,9 @@ def load(self, interrupt_flag, progress_callback):
patient_dict_container.set("num_points", dict_numpoints)
patient_dict_container.set("pixluts", dict_pixluts)

if 'rtdose' not in file_names_dict:
self.load_temp_rtdose(path,progress_callback,interrupt_flag)

if 'rtdose' in file_names_dict:
# Check to see if DVH data exists in the RT Dose. If
# it is there, return (it will be populated later). If
Expand Down Expand Up @@ -222,6 +225,59 @@ def load_temp_rtss(self, path, progress_callback, interrupt_flag):
patient_dict_container.set("dict_dicom_tree_rtss", ordered_dict)
patient_dict_container.set("selected_rois", [])


def load_temp_rtdose(self, path, progress_callback, interrupt_flag):
"""
Generate a temporary rtdose and load its data into
PatientDictContainer
:param path: str. The common root folder of all DICOM files.
:param progress_callback: A signal that receives the current
progress of the loading.
:param interrupt_flag: A threading.Event() object that tells the
function to stop loading.
"""
progress_callback.emit(("Generating temporary rtdose...", 20))
patient_dict_container = PatientDictContainer()
rtdose_path = Path(path).joinpath('rtdose.dcm')
if patient_dict_container.dataset[0].Modality == 'CR':
print("Unable to generate temporary RT Dose based on CR image")
return False

uid_list = ImageLoading.get_image_uid_list(
patient_dict_container.dataset)



rtdose = create_initial_rtdose_from_ct(patient_dict_container.dataset[0], rtdose_path, uid_list)

if interrupt_flag.is_set(): # Stop loading.
print("stopped")
return False

progress_callback.emit(("Loading temporary rtdose...", 50))
# Set ROIs

# rois = ImageLoading.get_roi_info(rtdose)
# patient_dict_container.set("rois", rois)

# Set pixluts
dict_pixluts = ImageLoading.get_pixluts(patient_dict_container.dataset)
patient_dict_container.set("pixluts", dict_pixluts)

# write the half baked RT Dose to file so future business logic will find it.
dcmwrite(rtdose_path,rtdose,False)
# Add RT Dose file path and dataset to patient dict container
patient_dict_container.filepaths['rtdose'] = rtdose_path
patient_dict_container.dataset['rtdose'] = rtdose

# Set some patient dict container attributes
patient_dict_container.set("file_rtdose", rtdose_path)
patient_dict_container.set("dataset_rtdose", rtdose)
ordered_dict = DicomTree(None).dataset_to_dict(rtdose)
patient_dict_container.set("dict_dicom_tree_rtdose", ordered_dict)
# patient_dict_container.set("selected_rois", [])


def update_calc_dvh(self, advice):
self.advised_calc_dvh = True
self.calc_dvh = advice
1 change: 1 addition & 0 deletions src/dicom_constants.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
"""Contains DICOM standard SOP class UID"""

CT_IMAGE = "1.2.840.10008.5.1.4.1.1.2"
MR_IMAGE = "1.2.840.10008.5.1.4.1.1.4"
RT_STRUCTURE_SET = "1.2.840.10008.5.1.4.1.1.481.3"
RT_DOSE = "1.2.840.10008.5.1.4.1.1.481.2"
RT_PLAN = "1.2.840.10008.5.1.4.1.1.481.5"
Expand Down

0 comments on commit d1bd762

Please sign in to comment.