Skip to content

k210(MaixPy)/V831 model example train code, include mobilenet classifier and YOLO V2 detector

License

Notifications You must be signed in to change notification settings

sipeed/maix_train

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

train_scripts

You can also train on Maixhub.com, just upload your datasets and you will get the result(kmodel and usage code)

Train type

  • Object classification(Mobilenet V1): judge class of image
  • Object detection(YOLO v2): find a recognizable object in the picture

Usage

0. Prepare

  • only support Linux
  • Prepare environment, use CPU or GPU to train At your fist time train, CPU is recommended, just
pip3 install -r requirements.txt

or use aliyun's source if you are in China

pip3 install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
  • Download nncase and unzip it to tools/ncc/ncc_v0.1, and the executable path is tools/ncc/ncc_v0.1/ncc
  • python3 train.py init
  • Edit instance/config.py according to your hardware
  • Prepare dataset, in the datasets directory has some example datasets, input size if 224x224 or you just fllow maixhub's conduct

1. Object classification (Mobilenet V1)

python3 train.py -t classifier -z datasets/test_classifier_datasets.zip train

or assign datasets directory

python3 train.py -t classifier -d datasets/test_classifier_datasets train

more command seepython3 train.py -h

and you will see output in the out directory, packed as a zip file

2. Object detection (YOLO V2)

python3 train.py -t detector -z datasets/test_detector_xml_format.zip train

more command seepython3 train.py -h

and you will see output in the out directory, packed as a zip file

Use GPU

Use docker or install tensorflow with GPU in your local environment

Tensorflow's version should >= 2.0, tested on 2.1

Use docker(recommend)

see tensorflow official website (或者可以参考这篇教程)

docker pull neucrack/tensorflow-gpu-py3-jupyterlab

or

docker pull daocloud.io/neucrack/tensorflow-gpu-py3-jupyterlab
  • Test environment
docker run --gpus all -it --rm neucrack/tensorflow-gpu-py3-jupyterlab python -c "import tensorflow as tf; print('-----version:{}, gpu:{}, 1+2={}'.format(tf.__version__, tf.test.is_gpu_available(), tf.add(1, 2).numpy()) );"

if output is-----version:2.1.0, gpu:True, 1+2=3, that's ok(maybe version can > 2.1.0)

  • Create docker container
docker run --gpus all --name jupyterlab-gpu -it -p 8889:8889 -e USER_NAME=$USER -e USER_ID=`id -u $USER` -e GROUP_NAME=`id -gn $USER` -e GROUP_ID=`id -g $USER` -v /home/${USER}:/tf neucrack/tensorflow-gpu-py3-jupyterlab

If used daocloud, image name should be change to daocloud.io/neucrack/tensorflow-gpu-py3-jupyterlab

This will mount your/home/$USER directory to /tf directory of container, the /tf is the root dir of jupyterlab

Stop by docker stop jupyterlab-gpu, start again by docker start jupyterlab-gpu To use sudo command, edit user password by

docker exec -it jupyterlab_gpu /bin/bash
passwd $USER
passwd root
  • use jupyterlab

Open http://127.0.0.1:8889/lab? in browser, input token(see docker start log) and set new password

Use docker stop jupyterlab-gpu to stop server Use docker start jupyterlab-gpu to start service again

Install on local environment

refer to tensorflow official website

License

Apache 2.0, see LICENSE