This release introduces the distinction between the Estimator()
classes, which provides the .fit()
, .update()
, .predict()
methods and the EstimationMethod()
classes, which do the actual fitting of
- easier integration of new estimation methods
- easier handling of default parameters for methods
- easier handling of non-default parameters for methods, especially for non-standard parameters like bounds, regularization strengths, etc..
- much cleaner code in
OnlineGamlss()
Breaking change: This change gets rid of the estimation_kwargs
parameter in OnlineGamlss()
which was cumbersome and poorly documented anyways.
Furthermore, we
- align the API of
OnlineGamlss()
andOnlineLinearModel()
and derive theOnlineLasso()
fromOnlineLinearModel()
to show the flexibility of the new approach. - Introduce a verbosity parameter for
OnlineGamlss()
to print information to the user. - Add some properties to (slowly) align more to the
sklearn
API - Some minor fixes like fixing #36
- Add a lot of documentation