Skip to content

Implementation of Swin Transformer with Pytorch

Notifications You must be signed in to change notification settings

silver-hzh/Swin-Transformer

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Swin Transformer

Accuracy Aligned. Concise Implementation of Swin Transformer

This repository contains the implementation of Swin Transformer, and the training codes on ImageNet datasets. We have aligned the output of our network with the official one, that is, using the same input and random seed, the output is identical to the official one.

Our implementation is highly based on einops, which makes the implementation more concise, and easy to be understand. (Intuitively, we use only 200 lines of codes compared with ~600 lines of official codes.) Besides, our implementation keeps the same training speed.

Model Epoch acc@1(our) acc@5(our) acc@1(official) acc@5(official) pretrained model
Swin-T 300 81.3 95.5 81.2 95.5 here

Usage

Train on ImageNet:

Train Swin-T

python -m torch.distributed.launch --nproc_per_node=8 --use_env train.py --model Swin_T \
--batch-size 128 --drop-path 0.2 --data-path ~/ILSVRC2012/ --output_dir /data/SwinTransformer_exp/SwinT/

Train Swin-S

python -m torch.distributed.launch --nproc_per_node=8 --use_env train.py --model Swin_S \
--batch-size 128 --drop-path 0.3 --data-path ~/ILSVRC2012/ --output_dir /data/SwinTransformer_exp/SwinS/

Train Swin-B

python -m torch.distributed.launch --nproc_per_node=8 --use_env train.py --model Swin_B \
--batch-size 128 --drop-path 0.5 --data-path ~/ILSVRC2012/ --output_dir /data/SwinTransformer_exp/SwinB/

Reference

The training process involves many training and augmentation tricks, such as stochastic depth, mixup, cutmix and random erasing. I borrow large from Deit (https://github.com/facebookresearch/deit).

Citations

@misc{liu2021swin,
      title={Swin Transformer: Hierarchical Vision Transformer using Shifted Windows}, 
      author={Ze Liu and Yutong Lin and Yue Cao and Han Hu and Yixuan Wei and Zheng Zhang and Stephen Lin and Baining Guo},
      year={2021},
      eprint={2103.14030},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

About

Implementation of Swin Transformer with Pytorch

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%