Skip to content

Code for Watch and Match: Supercharging Imitation with Regularized Optimal Transport

Notifications You must be signed in to change notification settings

siddhanthaldar/ROT

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Watch and Match: Supercharging Imitation with Regularized Optimal Transport

This is a repository containing the code for the paper "Watch and Match: Supercharging Imitation with Regularized Optimal Transport".

github_intro

Download expert demonstrations, weights and environment libraries [link]

The link contains the following:

  • The expert demonstrations for all tasks in the paper.
  • The weight files for the expert (DrQ-v2) and behavior cloning (BC).
  • The supporting libraries for environments (Gym-Robotics, metaworld) in the paper.
  • Extract the files provided in the link
    • set the path/to/dir portion of the root_dir path variable in cfgs/config.yaml to the path of the ROT repository.
    • place the expert_demos and weights folders in ${root_dir}/ROT.

Instructions

  • Install Mujoco based on the instructions given here.
  • Install the following libraries:
sudo apt update
sudo apt install libosmesa6-dev libgl1-mesa-glx libglfw3
  • Install dependencies

    • Set up Environment
    conda env create -f conda_env.yml
    conda activate rot
    
    • Install Gym-Robotics
    pip install -e /path/to/dir/Gym-Robotics
    
    • Install Meta-World
    pip install -e /path/to/dir/metaworld
    
    • Install particle environment (for experiment in Fig. 2 in the paper)
    pip install -e /path/to/dir/gym-envs
    
  • Train BC agent - We provide three different commands for running the code on the DeepMind Control Suite, OpenAI Robotics Suite and the Meta-World Benchmark

    • For pixel-based input
    python train.py agent=bc suite=dmc obs_type=pixels suite/dmc_task=walker_run num_demos=10
    
    python train.py agent=bc suite=openaigym obs_type=pixels suite/openaigym_task=fetch_reach num_demos=50
    
    python train.py agent=bc suite=metaworld obs_type=pixels suite/metaworld_task=hammer num_demos=1
    
    python train_robot.py agent=bc suite=robot_gym obs_type=pixels suite/robotgym_task=reach num_demos=1
    
    • For state-based input
    python train.py agent=bc suite=dmc obs_type=features suite/dmc_task=walker_run num_demos=10
    
    python train.py agent=bc suite=openaigym obs_type=features suite/openaigym_task=fetch_reach num_demos=50
    
    python train.py agent=bc suite=metaworld obs_type=features suite/metaworld_task=hammer num_demos=1
    
  • Train ROT - We provide three different commands for running the code on the DeepMind Control Suite, OpenAI Robotics Suite and the Meta-World Benchmark

    • For pixel-based input
    python train.py agent=potil suite=dmc obs_type=pixels suite/dmc_task=walker_run load_bc=true bc_regularize=true num_demos=10
    
    python train.py agent=potil suite=openaigym obs_type=pixels suite/openaigym_task=fetch_reach load_bc=true bc_regularize=true num_demos=50
    
    python train.py agent=potil suite=metaworld obs_type=pixels suite/metaworld_task=hammer load_bc=true bc_regularize=true num_demos=1
    
    python train_robot.py agent=potil suite=robotgym obs_type=pixels suite/robotgym_task=reach load_bc=true bc_regularize=true num_demos=1
    
    • For state-based input
    python train.py agent=potil suite=dmc obs_type=features suite/dmc_task=walker_run load_bc=true bc_regularize=true num_demos=10
    
    python train.py agent=potil suite=openaigym obs_type=features suite/openaigym_task=fetch_reach load_bc=true bc_regularize=true num_demos=50
    
    python train.py agent=potil suite=metaworld obs_type=features suite/metaworld_task=hammer load_bc=true bc_regularize=true num_demos=1
    
  • Monitor results

tensorboard --logdir exp_local

Bibtex

@article{haldar2022watch,
         title={Watch and Match: Supercharging Imitation with Regularized Optimal Transport},
         author={Haldar, Siddhant and Mathur, Vaibhav and Yarats, Denis and Pinto, Lerrel},
         journal={CoRL},
         year={2022}
        } 

About

Code for Watch and Match: Supercharging Imitation with Regularized Optimal Transport

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages