π¨ Under Construction π§
-->-->-->-->->->->->-------<-<-<--<-<--<-<--<--
ββββ βββββ ββ ββ ββββ ββββ ββββ
ββ ββ ββ ββββββ ββ ββ ββ ββ ββ
ββββ βββββ ββ βββ ββββ βββββ ββββ
ββ βββββ ββ ββ ββ ββ ββ βββββ
Penalized Regression for Polygenic Risk Scores
Version: 0.0.1 | Release date: January 2025
Authors: Shadi Zabad & Jack Song
McGill University
-->-->-->-->->->->->-------<-<-<--<-<--<-<--<--
To install the package from GitHub
, use the following command:
pip install git+https://github.com/shz9/penprs.git
import magenpy as mgp
from penprs.model.Lasso import Lasso
# Load the data
gdl = mgp.GWADataLoader(mgp.tgp_eur_data_path(),
sumstats_files=mgp.ukb_height_sumstats_path(),
sumstats_format="fastgwa")
# Compute LD matrix:
ld_block_url = "https://bitbucket.org/nygcresearch/ldetect-data/raw/ac125e47bf7ff3e90be31f278a7b6a61daaba0dc/EUR/fourier_ls-all.bed"
gdl.compute_ld('block',
ld_blocks_file=ld_block_url,
dtype='int16',
compute_spectral_properties=True,
output_dir='temp/block_ld/')
# Initialize Lasso model:
lasso_model = Lasso(gdl, lam=100)
# Perform model fit:
lasso_model.fit()
If you use this package in your research, please cite the following paper:
@article {Song2025.01.28.25321292,
author = {Song, Junyi and Zabad, Shadi and Yang, Archer and Li, Yue},
title = {Sparse Polygenic Risk Score Inference with the Spike-and-Slab LASSO},
elocation-id = {2025.01.28.25321292},
year = {2025},
doi = {10.1101/2025.01.28.25321292},
publisher = {Cold Spring Harbor Laboratory Press},
URL = {https://www.medrxiv.org/content/early/2025/01/29/2025.01.28.25321292},
eprint = {https://www.medrxiv.org/content/early/2025/01/29/2025.01.28.25321292.full.pdf},
journal = {medRxiv}
}