Skip to content

An innovative AI conversation API leveraging Google's Gemini for multimodal understanding. Combines FastAPI, Langchain, and Redis for robust, scalable, and privacy-conscious text and image-based interactions

Notifications You must be signed in to change notification settings

shamspias/langchain-gemini-api

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

83 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

langchain-gemini-api

Overview

langchain-gemini-api is an AI-powered conversation API that integrates Google's Gemini API, designed to facilitate advanced text and image-based interactions. This project combines the capabilities of modern deep learning models with FastAPI for high performance and scalability, Langchain for sophisticated conversational workflows, and Redis for ephemeral conversation storage.

Key Features

  • Asynchronous API: Utilizing FastAPI for enhanced performance and scalability.
  • Langchain Integration: Advanced conversational workflows using multiple AI models.
  • Google Gemini API: Incorporating Gemini, Gemini Pro, and Gemini Pro Vision for superior conversation understanding and generation.
  • Ephemeral Conversation Storage: Implementing Redis for data privacy and efficient memory usage.
  • User-Friendly Interface: Simplified API endpoints for easy integration.

Getting Started

Prerequisites for Google Gemini API

Prerequisites for langchain-gemini-api

  • Python 3.9 or higher
  • FastAPI
  • Uvicorn
  • Redis
  • Access to Google Gemini API

Installation

Install Redis

  1. Install Redis:
    sudo apt update
    sudo apt install redis-server
    Windows users can download Redis from here
  2. Test Redis:
    redis-cli ping
    If Redis is running, it will return PONG.

Install Python Dependencies

  1. Clone the repository:
    git clone https://github.com/shamspias/langchain-gemini-api.git
  2. Create a virtual environment:
    python3 -m venv venv
    for Windows:
    python -m venv venv
  3. Activate the virtual environment:
     source venv/bin/activate
  4. Navigate to the project directory and install dependencies:
    cd langchain-gemini-api
    pip install -r requirements.txt

Configuration

  1. Create a .env file in the project directory and add the following:
    GEMINI_API_KEY=<your_google_gemini_api_key> # e.g. "1234567890"
    REDIS_URL=redis://localhost:6379/0 # default Redis URL
    MY_API_KEY=<your_api_key_to_access_your_backend_api> # e.g. "1234567890"
    SYSTEM_INSTRUCTION=<your_system_instruction_for_gemini> # e.g. "Your are Sam and an AI assistant...etc"

Running the API

  1. Start fastapi server:
uvicorn app.main:app --reload

The API will be available at http://localhost:8000.

API Endpoints

  • /conversations/<conversation_id>: Endpoint for text and image based conversations.
  • /delete/<conversation_id>: Endpoint to delete conversation data.

API Documentation

Acknowledgments

Demo

Conversation

With telegram bot use this one: https://t.me/rim_nova_bot

This is the telegram bot repo: Gemini-Telegram-Bot

Conversation Conversation Conversation

Video

  • Coming soon

About

An innovative AI conversation API leveraging Google's Gemini for multimodal understanding. Combines FastAPI, Langchain, and Redis for robust, scalable, and privacy-conscious text and image-based interactions

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages