Skip to content

Commit

Permalink
Merge pull request #1319 from Circuit8/represent-optimizations
Browse files Browse the repository at this point in the history
Represent optimizations
  • Loading branch information
serengil authored Aug 26, 2024
2 parents 0022131 + f4d164e commit ed1b117
Show file tree
Hide file tree
Showing 3 changed files with 90 additions and 58 deletions.
3 changes: 2 additions & 1 deletion .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -16,4 +16,5 @@ tests/*.csv
benchmarks/results
benchmarks/outputs
benchmarks/dataset
benchmarks/lfwe
benchmarks/lfwe
venv
144 changes: 87 additions & 57 deletions deepface/modules/detection.py
Original file line number Diff line number Diff line change
@@ -1,15 +1,16 @@
# built-in dependencies
from typing import Any, Dict, List, Tuple, Union
from typing import Any, Dict, List, Tuple, Union, Optional

# 3rd part dependencies
from heapq import nlargest
import numpy as np
import cv2
from PIL import Image

# project dependencies
from deepface.modules import modeling
from deepface.models.Detector import Detector, DetectedFace, FacialAreaRegion
from deepface.commons import image_utils

from deepface.commons.logger import Logger

logger = Logger()
Expand All @@ -27,6 +28,7 @@ def extract_faces(
color_face: str = "rgb",
normalize_face: bool = True,
anti_spoofing: bool = False,
max_faces: Optional[int] = None,
) -> List[Dict[str, Any]]:
"""
Extract faces from a given image
Expand Down Expand Up @@ -97,6 +99,7 @@ def extract_faces(
img=img,
align=align,
expand_percentage=expand_percentage,
max_faces=max_faces,
)

# in case of no face found
Expand Down Expand Up @@ -176,7 +179,9 @@ def extract_faces(


def detect_faces(
detector_backend: str, img: np.ndarray, align: bool = True, expand_percentage: int = 0
detector_backend: str, img: np.ndarray,
align: bool = True, expand_percentage: int = 0,
max_faces: Optional[int] = None
) -> List[DetectedFace]:
"""
Detect face(s) from a given image
Expand All @@ -202,7 +207,6 @@ def detect_faces(
- confidence (float): The confidence score associated with the detected face.
"""
height, width, _ = img.shape

face_detector: Detector = modeling.build_model(
task="face_detector", model_name=detector_backend
)
Expand Down Expand Up @@ -233,60 +237,77 @@ def detect_faces(
# find facial areas of given image
facial_areas = face_detector.detect_faces(img)

results = []
for facial_area in facial_areas:
x = facial_area.x
y = facial_area.y
w = facial_area.w
h = facial_area.h
left_eye = facial_area.left_eye
right_eye = facial_area.right_eye
confidence = facial_area.confidence

if expand_percentage > 0:
# Expand the facial region height and width by the provided percentage
# ensuring that the expanded region stays within img.shape limits
expanded_w = w + int(w * expand_percentage / 100)
expanded_h = h + int(h * expand_percentage / 100)

x = max(0, x - int((expanded_w - w) / 2))
y = max(0, y - int((expanded_h - h) / 2))
w = min(img.shape[1] - x, expanded_w)
h = min(img.shape[0] - y, expanded_h)

# extract detected face unaligned
detected_face = img[int(y) : int(y + h), int(x) : int(x + w)]

# align original image, then find projection of detected face area after alignment
if align is True: # and left_eye is not None and right_eye is not None:
aligned_img, angle = align_img_wrt_eyes(img=img, left_eye=left_eye, right_eye=right_eye)

rotated_x1, rotated_y1, rotated_x2, rotated_y2 = project_facial_area(
facial_area=(x, y, x + w, y + h), angle=angle, size=(img.shape[0], img.shape[1])
)
detected_face = aligned_img[
int(rotated_y1) : int(rotated_y2), int(rotated_x1) : int(rotated_x2)
]

# restore x, y, le and re before border added
x = x - width_border
y = y - height_border
# w and h will not change
if left_eye is not None:
left_eye = (left_eye[0] - width_border, left_eye[1] - height_border)
if right_eye is not None:
right_eye = (right_eye[0] - width_border, right_eye[1] - height_border)

result = DetectedFace(
img=detected_face,
facial_area=FacialAreaRegion(
x=x, y=y, h=h, w=w, confidence=confidence, left_eye=left_eye, right_eye=right_eye
),
confidence=confidence,
if max_faces is not None and max_faces < len(facial_areas):
facial_areas = nlargest(
max_faces,
facial_areas,
key=lambda facial_area: facial_area.w * facial_area.h
)
results.append(result)
return results

return [
expand_and_align_face(
facial_area=facial_area,
img=img,
align=align,
expand_percentage=expand_percentage,
width_border=width_border,
height_border=height_border
)
for facial_area in facial_areas
]

def expand_and_align_face(
facial_area: FacialAreaRegion, img: np.ndarray,
align: bool, expand_percentage: int, width_border: int,
height_border: int) -> DetectedFace:
x = facial_area.x
y = facial_area.y
w = facial_area.w
h = facial_area.h
left_eye = facial_area.left_eye
right_eye = facial_area.right_eye
confidence = facial_area.confidence

if expand_percentage > 0:
# Expand the facial region height and width by the provided percentage
# ensuring that the expanded region stays within img.shape limits
expanded_w = w + int(w * expand_percentage / 100)
expanded_h = h + int(h * expand_percentage / 100)

x = max(0, x - int((expanded_w - w) / 2))
y = max(0, y - int((expanded_h - h) / 2))
w = min(img.shape[1] - x, expanded_w)
h = min(img.shape[0] - y, expanded_h)

# extract detected face unaligned
detected_face = img[int(y) : int(y + h), int(x) : int(x + w)]
# align original image, then find projection of detected face area after alignment
if align is True: # and left_eye is not None and right_eye is not None:
aligned_img, angle = align_img_wrt_eyes(img=img, left_eye=left_eye, right_eye=right_eye)

rotated_x1, rotated_y1, rotated_x2, rotated_y2 = project_facial_area(
facial_area=(x, y, x + w, y + h), angle=angle, size=(img.shape[0], img.shape[1])
)
detected_face = aligned_img[
int(rotated_y1) : int(rotated_y2), int(rotated_x1) : int(rotated_x2)
]

# restore x, y, le and re before border added
x = x - width_border
y = y - height_border
# w and h will not change
if left_eye is not None:
left_eye = (left_eye[0] - width_border, left_eye[1] - height_border)
if right_eye is not None:
right_eye = (right_eye[0] - width_border, right_eye[1] - height_border)

return DetectedFace(
img=detected_face,
facial_area=FacialAreaRegion(
x=x, y=y, h=h, w=w, confidence=confidence, left_eye=left_eye, right_eye=right_eye
),
confidence=confidence,
)

def align_img_wrt_eyes(
img: np.ndarray,
Expand All @@ -311,7 +332,16 @@ def align_img_wrt_eyes(
return img, 0

angle = float(np.degrees(np.arctan2(left_eye[1] - right_eye[1], left_eye[0] - right_eye[0])))
img = np.array(Image.fromarray(img).rotate(angle, resample=Image.BICUBIC))

(h, w) = img.shape[:2]
center = (w // 2, h // 2)
M = cv2.getRotationMatrix2D(center, angle, 1.0)
img = cv2.warpAffine(
img, M, (w, h),
flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_CONSTANT,
borderValue=(0,0,0)
)

return img, angle


Expand Down
1 change: 1 addition & 0 deletions deepface/modules/representation.py
Original file line number Diff line number Diff line change
Expand Up @@ -81,6 +81,7 @@ def represent(
align=align,
expand_percentage=expand_percentage,
anti_spoofing=anti_spoofing,
max_faces=max_faces,
)
else: # skip
# Try load. If load error, will raise exception internal
Expand Down

0 comments on commit ed1b117

Please sign in to comment.