Skip to content

Commit

Permalink
deploy: 7f84303
Browse files Browse the repository at this point in the history
  • Loading branch information
gcerar committed Sep 11, 2024
1 parent 9388148 commit 7156fd4
Show file tree
Hide file tree
Showing 26 changed files with 53 additions and 22 deletions.
2 changes: 1 addition & 1 deletion en/sitemap.xml

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion index.xml

Large diffs are not rendered by default.

Binary file added projects/ai-assist/aris_logo.jpg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
5 changes: 5 additions & 0 deletions projects/ai-assist/index.html
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
<!doctype html><html lang=en class=no-js><head><meta charset=utf-8><meta http-equiv=x-ua-compatible content="IE=edge"><meta name=viewport content="width=device-width,initial-scale=1,viewport-fit=cover"><link rel=stylesheet href="/style.min.56ff6ea4aaee34035792dc752e429137eb80f83d06538d35ff0732d55aeaea77.css" integrity="sha256-Vv9upKruNANXktx1LkKRN+uA+D0GU401/wcy1Vrq6nc=" crossorigin=anonymous><script defer type=text/javascript src=https://sensorlab.github.io/scripts/app.min.a1e24ba7aed7aec0b2d60ce482dba1d500bfd50e415d2211415b56d4ca18a02c.js integrity="sha256-oeJLp67XrsCy1gzkgtuh1QC/1Q5BXSIRQVtW1MoYoCw="></script><meta name=generator content="Hugo 0.117.0"><meta name=author content="SensorLab"><meta name=keywords content="energy,energy grid,artificial intelligence,dynamic stability assessment,monitoring"><meta name=description content="The AI-ASSIST project focuses on developing a real-time dynamic stability assessment (DSA) tool for electric power systems, using artificial intelligence to enhance stability monitoring in response to rapidly changing environmental and technological demands. The project aims to integrate advanced monitoring infrastructure with AI techniques to predict and address potential instabilities in power systems. Organizations involved in this initiative include the University of Ljubljana&amp;rsquo;s Faculty of Electrical Engineering (UL-FE), the Jožef Stefan Institute (JSI), and ELES, Slovenia’s national transmission system operator."><meta name=robots content="noindex,nofollow"><link rel=canonical href=https://sensorlab.github.io/projects/ai-assist/><link rel=alternate hreflang=en href=https://sensorlab.github.io/projects/ai-assist/><link rel=icon type=image/png href=https://sensorlab.github.io/images/favicon.png><meta property="og:title" content="AI-ASSIST: Artificial intelligence based real-time power system stability assessment"><meta property="og:description" content="The AI-ASSIST project focuses on developing a real-time dynamic stability assessment (DSA) tool for electric power systems, using artificial intelligence to enhance stability monitoring in response to rapidly changing environmental and technological demands. The project aims to integrate advanced monitoring infrastructure with AI techniques to predict and address potential instabilities in power systems. Organizations involved in this initiative include the University of Ljubljana&rsquo;s Faculty of Electrical Engineering (UL-FE), the Jožef Stefan Institute (JSI), and ELES, Slovenia’s national transmission system operator."><meta property="og:type" content="article"><meta property="og:url" content="https://sensorlab.github.io/projects/ai-assist/"><meta property="article:section" content="projects"><meta name=twitter:card content="summary"><meta name=twitter:title content="AI-ASSIST: Artificial intelligence based real-time power system stability assessment"><meta name=twitter:description content="The AI-ASSIST project focuses on developing a real-time dynamic stability assessment (DSA) tool for electric power systems, using artificial intelligence to enhance stability monitoring in response to rapidly changing environmental and technological demands. The project aims to integrate advanced monitoring infrastructure with AI techniques to predict and address potential instabilities in power systems. Organizations involved in this initiative include the University of Ljubljana&rsquo;s Faculty of Electrical Engineering (UL-FE), the Jožef Stefan Institute (JSI), and ELES, Slovenia’s national transmission system operator."><title>AI-ASSIST: Artificial intelligence based real-time power system stability assessment &mdash; SensorLab — Jozef Stefan Institute</title></head><body><header class="navbar navbar-expand-md"><div class=container><a class=navbar-brand href=https://sensorlab.github.io/><img src=https://sensorlab.github.io/images/sensorlab-white.min.svg alt="SensorLab logo" class="d-inline-block align-top me-2" height=42></a>
<button class=navbar-toggler type=button data-bs-toggle=collapse data-bs-target=#navbarToggler aria-controls=navbarToggler aria-expanded=false aria-label="Toggle navigation">
<span class=navbar-toggler-icon></span></button><nav class="collapse navbar-collapse" id=navbarToggler><ul class="navbar-nav ms-0 ms-md-auto ps-4"><li class=nav-item><a class="nav-link active" href=https://sensorlab.github.io/projects><span>Projects</span></a></li><li class=nav-item><a class=nav-link href=https://sensorlab.github.io/results><span>Results</span></a></li><li class=nav-item><a class=nav-link href=https://sensorlab.github.io/publications><span>Publications</span></a></li><li class=nav-item><a class=nav-link href=https://sensorlab.github.io/people><span>People</span></a></li><li class=nav-item><a class=nav-link href=https://sensorlab.github.io/opportunities><span>Join Us</span></a></li><li class=nav-item><a class=nav-link href=https://sensorlab.github.io/about><span>About</span></a></li></ul></nav></div></header><main class="flex-fill container post my-4" aria-role=main><aside class=my-4></aside><article class=mt-4><header class=mb-4><div><img src=https://sensorlab.github.io/projects/ai-assist/aris_logo_hub08622e5c39b8cb3af485e5245357ede_10856_200x0_resize_q75_box.jpg alt="AI-ASSIST: Artificial intelligence based real-time power system stability assessment logo" class="me-3 mb-2" height=200 width=200 style=max-width:min(200px,100vw)></div><div><h1>AI-ASSIST: Artificial intelligence based real-time power system stability assessment</h1><p><span>Duration: Oct 2023 &mdash; Sep 2026</span></p></div></header><section class=my-4><p>The AI-ASSIST project focuses on developing a real-time dynamic stability assessment (DSA) tool for electric power systems, using artificial intelligence to enhance stability monitoring in response to rapidly changing environmental and technological demands. The project aims to integrate advanced monitoring infrastructure with AI techniques to predict and address potential instabilities in power systems. Organizations involved in this initiative include the University of Ljubljana&rsquo;s Faculty of Electrical Engineering (UL-FE), the Jožef Stefan Institute (JSI), and ELES, Slovenia’s national transmission system operator. The Jožef Stefan Institute is responsible for developing and optimizing AI techniques for database management and real-time recognition of power system conditions.</p><p>The AI-ASSIST project receives funding from the Slovenian Research and Innovation Agency (ARIS) under Grant Agreement No. L2-50053.</p></section></article></main><footer class="container d-flex flex-wrap justify-content-between align-items-center py-3 my-4 border-top"><div class="col-md-6 d-flex align-items-center"><a href=https://sensorlab.github.io/ class="mb-3 me-2 mb-md-0 text-body-secondary text-decoration-none lh-1"><img src=https://sensorlab.github.io/images/sensorlab-color.min.svg style=height:2.5rem></a>
<span class=text-body-secondary>&copy; 2014&nbsp;&dash;&nbsp;2024 SensorLab, Jozef Stefan Institute</span></div><ul class="nav col-md-6 justify-content-center justify-content-xs-right list-unstyled d-flex flex-wrap"><li class=ms-3><a class=text-body-secondary target=_blank href=https://github.com/sensorlab>GitHub</a></li><li class=ms-3><a class=text-body-secondary target=_blank href=https://twitter.com/CommSysJSI>Twitter</a></li><li class=ms-3><a class=text-body-secondary target=_blank href=https://www.researchgate.net/institution/Joef_Stefan_Institute/department/Komunikacijski_sistemi>ResearchGate</a></li><li class=ms-3><a class=text-body-secondary target=_blank href=https://e6.ijs.si/>Department's site</a></li></ul></footer><script async src="https://www.googletagmanager.com/gtag/js?id=G-KQGSFFY1XV"></script>
<script>window.dataLayer=window.dataLayer||[];function gtag(){dataLayer.push(arguments)}gtag("js",new Date),gtag("config","G-KQGSFFY1XV")</script></body></html>
2 changes: 1 addition & 1 deletion projects/index.html

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion projects/index.xml

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion projects/misa/index.html
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
<!doctype html><html lang=en class=no-js><head><meta charset=utf-8><meta http-equiv=x-ua-compatible content="IE=edge"><meta name=viewport content="width=device-width,initial-scale=1,viewport-fit=cover"><link rel=stylesheet href="/style.min.56ff6ea4aaee34035792dc752e429137eb80f83d06538d35ff0732d55aeaea77.css" integrity="sha256-Vv9upKruNANXktx1LkKRN+uA+D0GU401/wcy1Vrq6nc=" crossorigin=anonymous><script defer type=text/javascript src=https://sensorlab.github.io/scripts/app.min.a1e24ba7aed7aec0b2d60ce482dba1d500bfd50e415d2211415b56d4ca18a02c.js integrity="sha256-oeJLp67XrsCy1gzkgtuh1QC/1Q5BXSIRQVtW1MoYoCw="></script><meta name=generator content="Hugo 0.117.0"><meta name=author content="SensorLab"><meta name=keywords content="bilateral,graph neural networks,LiDAR,reinforcement learning,Japan,Slovenia,Shinkuma,sensor fusion"><meta name=description content="The MISA (Multi-lidar Intelligence for Smart City Applications) project aims to strengthen cooperation between the research group at Jozef Stefan Institute (JSI) in Slovenia and Shinkuma Lab at Shibaura Institute of Technology (SIT) in Tokyo, Japan. The scientific cooperation will focus on optimizing LiDAR (Light Detection and Ranging) sensors using machine learning, with JSI contributing expertise in time series analysis and SIT leveraging its experience with smart city applications. The collaboration will address two key challenges: enhancing LiDAR sensor fusion accuracy through deep reinforcement learning and mitigating sparsity in LiDAR data using Graph Neural Networks."><meta name=robots content="noindex,nofollow"><link rel=canonical href=https://sensorlab.github.io/projects/misa/><link rel=alternate hreflang=en href=https://sensorlab.github.io/projects/misa/><link rel=icon type=image/png href=https://sensorlab.github.io/images/favicon.png><meta property="og:title" content="MISA: Multi-lidar Intelligence for Smart City Applications"><meta property="og:description" content="The MISA (Multi-lidar Intelligence for Smart City Applications) project aims to strengthen cooperation between the research group at Jozef Stefan Institute (JSI) in Slovenia and Shinkuma Lab at Shibaura Institute of Technology (SIT) in Tokyo, Japan. The scientific cooperation will focus on optimizing LiDAR (Light Detection and Ranging) sensors using machine learning, with JSI contributing expertise in time series analysis and SIT leveraging its experience with smart city applications. The collaboration will address two key challenges: enhancing LiDAR sensor fusion accuracy through deep reinforcement learning and mitigating sparsity in LiDAR data using Graph Neural Networks."><meta property="og:type" content="article"><meta property="og:url" content="https://sensorlab.github.io/projects/misa/"><meta property="article:section" content="projects"><meta name=twitter:card content="summary"><meta name=twitter:title content="MISA: Multi-lidar Intelligence for Smart City Applications"><meta name=twitter:description content="The MISA (Multi-lidar Intelligence for Smart City Applications) project aims to strengthen cooperation between the research group at Jozef Stefan Institute (JSI) in Slovenia and Shinkuma Lab at Shibaura Institute of Technology (SIT) in Tokyo, Japan. The scientific cooperation will focus on optimizing LiDAR (Light Detection and Ranging) sensors using machine learning, with JSI contributing expertise in time series analysis and SIT leveraging its experience with smart city applications. The collaboration will address two key challenges: enhancing LiDAR sensor fusion accuracy through deep reinforcement learning and mitigating sparsity in LiDAR data using Graph Neural Networks."><title>MISA: Multi-lidar Intelligence for Smart City Applications &mdash; SensorLab — Jozef Stefan Institute</title></head><body><header class="navbar navbar-expand-md"><div class=container><a class=navbar-brand href=https://sensorlab.github.io/><img src=https://sensorlab.github.io/images/sensorlab-white.min.svg alt="SensorLab logo" class="d-inline-block align-top me-2" height=42></a>
<button class=navbar-toggler type=button data-bs-toggle=collapse data-bs-target=#navbarToggler aria-controls=navbarToggler aria-expanded=false aria-label="Toggle navigation">
<span class=navbar-toggler-icon></span></button><nav class="collapse navbar-collapse" id=navbarToggler><ul class="navbar-nav ms-0 ms-md-auto ps-4"><li class=nav-item><a class="nav-link active" href=https://sensorlab.github.io/projects><span>Projects</span></a></li><li class=nav-item><a class=nav-link href=https://sensorlab.github.io/results><span>Results</span></a></li><li class=nav-item><a class=nav-link href=https://sensorlab.github.io/publications><span>Publications</span></a></li><li class=nav-item><a class=nav-link href=https://sensorlab.github.io/people><span>People</span></a></li><li class=nav-item><a class=nav-link href=https://sensorlab.github.io/opportunities><span>Join Us</span></a></li><li class=nav-item><a class=nav-link href=https://sensorlab.github.io/about><span>About</span></a></li></ul></nav></div></header><main class="flex-fill container post my-4" aria-role=main><aside class=my-4></aside><article class=mt-4><header class=mb-4><div><img src=https://sensorlab.github.io/projects/misa/aris_logo_hub08622e5c39b8cb3af485e5245357ede_10856_200x0_resize_q75_box.jpg alt="MISA: Multi-lidar Intelligence for Smart City Applications logo" class="me-3 mb-2" height=200 width=200 style=max-width:min(200px,100vw)></div><div><h1>MISA: Multi-lidar Intelligence for Smart City Applications</h1><p><span>Duration: Apr 2024 &mdash; Apr 2026</span></p></div></header><section class=my-4><p>The MISA (Multi-lidar Intelligence for Smart City Applications) project aims to strengthen cooperation between the research group at Jozef Stefan Institute (JSI) in Slovenia and Shinkuma Lab at Shibaura Institute of Technology (SIT) in Tokyo, Japan. The scientific cooperation will focus on optimizing LiDAR (Light Detection and Ranging) sensors using machine learning, with JSI contributing expertise in time series analysis and SIT leveraging its experience with smart city applications. The collaboration will address two key challenges: enhancing LiDAR sensor fusion accuracy through deep reinforcement learning and mitigating sparsity in LiDAR data using Graph Neural Networks.</p><h2 id=funding>Funding</h2><p>Τhe MISA bilateral project receives funding from the Slovenian Research and Inovation Agency (ARIS) under Grant Agreement No. BI-JP/24-26-001.</p></section></article></main><footer class="container d-flex flex-wrap justify-content-between align-items-center py-3 my-4 border-top"><div class="col-md-6 d-flex align-items-center"><a href=https://sensorlab.github.io/ class="mb-3 me-2 mb-md-0 text-body-secondary text-decoration-none lh-1"><img src=https://sensorlab.github.io/images/sensorlab-color.min.svg style=height:2.5rem></a>
<span class=navbar-toggler-icon></span></button><nav class="collapse navbar-collapse" id=navbarToggler><ul class="navbar-nav ms-0 ms-md-auto ps-4"><li class=nav-item><a class="nav-link active" href=https://sensorlab.github.io/projects><span>Projects</span></a></li><li class=nav-item><a class=nav-link href=https://sensorlab.github.io/results><span>Results</span></a></li><li class=nav-item><a class=nav-link href=https://sensorlab.github.io/publications><span>Publications</span></a></li><li class=nav-item><a class=nav-link href=https://sensorlab.github.io/people><span>People</span></a></li><li class=nav-item><a class=nav-link href=https://sensorlab.github.io/opportunities><span>Join Us</span></a></li><li class=nav-item><a class=nav-link href=https://sensorlab.github.io/about><span>About</span></a></li></ul></nav></div></header><main class="flex-fill container post my-4" aria-role=main><aside class=my-4></aside><article class=mt-4><header class=mb-4><div><img src=https://sensorlab.github.io/projects/misa/aris_logo_hub08622e5c39b8cb3af485e5245357ede_10856_200x0_resize_q75_box.jpg alt="MISA: Multi-lidar Intelligence for Smart City Applications logo" class="me-3 mb-2" height=200 width=200 style=max-width:min(200px,100vw)></div><div><h1>MISA: Multi-lidar Intelligence for Smart City Applications</h1><p><span>Duration: Apr 2024 &mdash; Mar 2026</span></p></div></header><section class=my-4><p>The MISA (Multi-lidar Intelligence for Smart City Applications) project aims to strengthen cooperation between the research group at Jozef Stefan Institute (JSI) in Slovenia and Shinkuma Lab at Shibaura Institute of Technology (SIT) in Tokyo, Japan. The scientific cooperation will focus on optimizing LiDAR (Light Detection and Ranging) sensors using machine learning, with JSI contributing expertise in time series analysis and SIT leveraging its experience with smart city applications. The collaboration will address two key challenges: enhancing LiDAR sensor fusion accuracy through deep reinforcement learning and mitigating sparsity in LiDAR data using Graph Neural Networks.</p><p>Τhe MISA bilateral project receives funding from the Slovenian Research and Inovation Agency (ARIS) under Grant Agreement No. BI-JP/24-26-001.</p></section></article></main><footer class="container d-flex flex-wrap justify-content-between align-items-center py-3 my-4 border-top"><div class="col-md-6 d-flex align-items-center"><a href=https://sensorlab.github.io/ class="mb-3 me-2 mb-md-0 text-body-secondary text-decoration-none lh-1"><img src=https://sensorlab.github.io/images/sensorlab-color.min.svg style=height:2.5rem></a>
<span class=text-body-secondary>&copy; 2014&nbsp;&dash;&nbsp;2024 SensorLab, Jozef Stefan Institute</span></div><ul class="nav col-md-6 justify-content-center justify-content-xs-right list-unstyled d-flex flex-wrap"><li class=ms-3><a class=text-body-secondary target=_blank href=https://github.com/sensorlab>GitHub</a></li><li class=ms-3><a class=text-body-secondary target=_blank href=https://twitter.com/CommSysJSI>Twitter</a></li><li class=ms-3><a class=text-body-secondary target=_blank href=https://www.researchgate.net/institution/Joef_Stefan_Institute/department/Komunikacijski_sistemi>ResearchGate</a></li><li class=ms-3><a class=text-body-secondary target=_blank href=https://e6.ijs.si/>Department's site</a></li></ul></footer><script async src="https://www.googletagmanager.com/gtag/js?id=G-KQGSFFY1XV"></script>
<script>window.dataLayer=window.dataLayer||[];function gtag(){dataLayer.push(arguments)}gtag("js",new Date),gtag("config","G-KQGSFFY1XV")</script></body></html>
Loading

0 comments on commit 7156fd4

Please sign in to comment.