This project contains the source code of the Dynamic Neural Semantic Parser (DynSP), based on DyNet.
Detail of DynSP can be found in the following ACL-2017 paper:
Mohit Iyyer, Wen-tau Yih, Ming-Wei Chang. Search-based Neural Structured Learning for Sequential Question Answering. ACL-2017.
@InProceedings{iyyer-yih-chang:2017:Long,
author = {Iyyer, Mohit and Yih, Wen-tau and Chang, Ming-Wei},
title = {Search-based Neural Structured Learning for Sequential Question Answering},
booktitle = {Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
month = {July},
year = {2017},
address = {Vancouver, Canada},
publisher = {Association for Computational Linguistics},
pages = {1821--1831},
}
The output files and the models for producing the reported results are also included. Below are the scripts that produces the results reported in Table 2 of the paper (DynSP and DynSP*).
$ ./check.sh moduleKwNoMap-b15-ind
moduleKwNoMap-b15-ind
Best Accuracy: 0.425963 (Reward: 0.479099) at epoch 28
Best Accuracy: 0.369095 (Reward: 0.423323) at epoch 10
Best Accuracy: 0.348668 (Reward: 0.405460) at epoch 24
Best Accuracy: 0.377477 (Reward: 0.439594) at epoch 29
Best Accuracy: 0.349951 (Reward: 0.413719) at epoch 20
Best Accuracy: 0.351802 (Reward: 0.409400) at epoch 19
0.359399 20
$ ./evalModel-indep.sh moduleKwNoMap-b15-ind 20
Sequence Accuracy = 10.15% (104/1025)
Answer Accuracy = 41.97% (1264/3012)
Break-down:
Position 0 Accuracy = 70.93% (727/1025)
Position 1 Accuracy = 35.84% (367/1024)
Position 2 Accuracy = 20.06% (137/683)
Position 3 Accuracy = 12.23% (28/229)
Position 4 Accuracy = 13.16% (5/38)
Position 5 Accuracy = 0.00% (0/9)
Position 6 Accuracy = 0.00% (0/4)
$ ./check.sh moduleKwNoMap-b15
moduleKwNoMap-b15
Best Accuracy: 0.450863 (Reward: 0.516281) at epoch 17
Best Accuracy: 0.379691 (Reward: 0.439837) at epoch 12
Best Accuracy: 0.366021 (Reward: 0.422335) at epoch 16
Best Accuracy: 0.391892 (Reward: 0.456894) at epoch 26
Best Accuracy: 0.370968 (Reward: 0.442918) at epoch 20
Best Accuracy: 0.368468 (Reward: 0.431721) at epoch 18
0.375408 18
$ ./evalModel.sh moduleKwNoMap-b15 18
Sequence Accuracy = 12.78% (131/1025)
Answer Accuracy = 44.65% (1345/3012)
Break-down:
Position 0 Accuracy = 70.44% (722/1025)
Position 1 Accuracy = 41.11% (421/1024)
Position 2 Accuracy = 23.57% (161/683)
Position 3 Accuracy = 13.97% (32/229)
Position 4 Accuracy = 18.42% (7/38)
Position 5 Accuracy = 11.11% (1/9)
Position 6 Accuracy = 25.00% (1/4)
The Sequential Question Answering (SQA) dataset, published and used in the same paper, can be downloaded separately.