A ragtag collection of useful Python functions and classes.
- Installation
- Fast and flexible reading and random access of very large files
- Utilities to simplify building command-line apps
- Reservoir sampling
- Multikey dictionaries
- Decorators
- Colorblind palette
- Grids with sensible defaults in Matplotlib
- Fast indicator matrix x dense matrix multiplication in Tensorflow
- Issues, problems, suggestions
- Documentation
Install the pre-compiled version from GitHub:
$ pip install carabiner-tools
If you want to use the tensorflow
, pandas
, or matplotlib
utilities, these must be installed separately
or together:
$ pip install carabiner-tools[deep]
# or
$ pip install carabiner-tools[pd]
# or
$ pip install carabiner-tools[mpl]
# or
$ pip install carabiner-tools[all]
Clone the repository, then cd
into it. Then run:
$ pip install -e .
Subsets of lines from very large, optionally compressed, files can be read quickly into memory. for example, we can read the first 10,000 lines of an arbitrarily large file:
>>> from carabiner.io import get_lines
>>> get_lines("big-table.tsv.gz", lines=10_000)
Or random access of specific lines. Hundreds of millions of lines can be parsed per minute.
>>> get_lines("big-table.tsv.gz", lines=[999999, 10000000, 100000001])
This pattern will allow sampling a random subset:
>>> from random import sample
>>> from carabiner.io import count_lines, get_lines
>>> number_of_lines = count_lines("big-table.tsv.gz")
>>> line_sample = sample(range(number_of_lines), k=1000)
>>> get_lines("big-table.tsv.gz", lines=line_sample)
With this backend, we can read subsets of very large files more quickly
and flexibly than plain pandas.read_csv
. Formats (delimiters) including Excel
are inferred from file extensions, but can also be over-ridden with the format
parameter.
>>> from carabiner.pd import read_table
>>> read_table("big-table.tsv.gz", lines=10_000)
The same fast random access is availavble as for reading lines. Hundreds of millions of records can be looped through per minute.
>>> from random import sample
>>> from carabiner.io import count_lines, get_lines
>>> number_of_lines = count_lines("big-table.tsv.gz")
>>> line_sample = sample(range(number_of_lines), k=1000)
>>> read_table("big-table.tsv.gz", lines=line_sample)
The standard library argparse
is robust but verbose when building command-line apps with several sub-commands, each with many options. carabiner.cliutils
smooths this process. Apps are built by defining CLIOptions
which are then assigned to CLICommands
directing the functions to run when called, which then form part of a CLIApp
.
First define the options:
inputs = CLIOption('inputs',
type=str,
default=[],
nargs='*',
help='')
output = CLIOption('--output', '-o',
type=FileType('w'),
default=sys.stdout,
help='Output file. Default: STDOUT')
formatting = CLIOption('--format', '-f',
type=str,
default='TSV',
choices=['TSV', 'CSV', 'tsv', 'csv'],
help='Format of files. Default: %(default)s')
Then the commands:
test = CLICommand("test",
description="Test CLI subcommand using Carabiner utilities.",
options=[inputs, output, formatting],
main=_main)
The same options can be assigned to multiple commands if necessary.
Fianlly, define the app and run it:
app = CLIApp("Carabiner",
version=__version__,
description="Test CLI app using Carabiner utilities.",
commands=[test])
app.run()
If you need to sample a random subset from an iterator of unknown length by looping through only once, you can use this pure python implementation of reservoir sampling.
An important limitation is that while the population to be sampled is not necessarily in memory, the sampled population must fit in memory.
Originally written in Python Bugs.
Based on this GitHub Gist.
>>> from carabiner.random import sample_iter
>>> from string import ascii_letters
>>> from itertools import chain
>>> from random import seed
>>> seed(1)
>>> sample_iter(chain.from_iterable(ascii_letters for _ in range(1000000)), 10)
['X', 'c', 'w', 'q', 'T', 'e', 'u', 'w', 'E', 'h']
>>> seed(1)
>>> sample_iter(chain.from_iterable(ascii_letters for _ in range(1000000)), 10, shuffle_output=False)
['T', 'h', 'u', 'X', 'E', 'e', 'w', 'q', 'c', 'w']
Conveniently return the values of multiple keys from a dictionary without manually looping.
>>> from carabiner.collections import MultiKeyDict
>>> d = MultiKeyDict(a=1, b=2, c=3)
>>> d
{'a': 1, 'b': 2, 'c': 3}
>>> d['c']
{'c': 3}
>>> d['a', 'b']
{'a': 1, 'b': 2}
carabiner
provides several decorators to facilitate functional programming.
In scientific programming frameworks like numpy
we are used to functions which take a scalar or vector and apply to every element. It is occasionally useful to convert functions from arbitrary packages to behave in a vectorized manner on Python iterables.
Scalar functions can be converted to a vectorized form easily using @vectorize
.
>>> @vectorize
... def vector_adder(x): return x + 1
...
>>> list(vector_adder(range(3)))
[1, 2, 3]
>>> list(vector_adder((4, 5, 6)))
[5, 6, 7]
>>> vector_adder([10])
11
>>> vector_adder(10)
11
When it is useful for a function to not fail, but have a testable indicator of success, you can wrap in @return_none_on_error
.
>>> def error_maker(x): raise KeyError
...
>>> @return_none_on_error
... def error_maker2(x): raise KeyError
...
>>> @return_none_on_error(exception=ValueError)
... def error_maker3(x): raise KeyError
...
>>> error_maker('a') # Causes an error
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 1, in error_maker
KeyError
>>> error_maker2('a') # Wrapped returns None
>>> error_maker3('a') # Only catches ValueError
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File ".../carabiner/decorators.py", line 59, in wrapped_function
File "<stdin>", line 2, in error_maker3
KeyError
Sometimes a decorator has optional parameters to control its behavior. It's convenient to use it in the form @decorator
when you want the default behavior, or @decorator(*kwargs)
when you want to custmize the behavior. Usually this requires some convoluted code, but this has been packed up into @decorator_with_params
, to decorate your decorator definitions!
>>> def decor(f, suffix="World"):
... return lambda x: f(x + suffix)
...
>>> @decor
... def printer(x):
... print(x)
...
# doesn't work, raises an error!
>>> @decor(suffix="everyone")
... def printer2(x):
... print(x)
...
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: decor() missing 1 required positional argument: 'f'
# decorate the decorator!
>>> @decorator_with_params
... def decor2(f, suffix="World"):
... return lambda x: f(x + suffix)
...
# Now it works!
>>> @decor2(suffix="everyone")
... def printer3(x):
... print(x)
...
>>> printer("Hello ")
Hello World
>>> printer3("Hello ")
Hello everyone
Here's a qualitative palette that's colorblind friendly.
>>> from carabiner import colorblind_palette
>>> colorblind_palette()
('#EE7733', '#0077BB', '#33BBEE', '#EE3377', '#CC3311', '#009988', '#BBBBBB', '#000000')
# subsets
>>> colorblind_palette(range(2))
('#EE7733', '#0077BB')
>>> colorblind_palette(slice(3, 6))
('#EE3377', '#CC3311', '#009988')
While plt.subplots()
is very flexible, it requires many defaults to be defined. Instead, carabiner.mpl.grid()
generates the fig, ax
tuple with sensible defaults of a 1x1 grid with panel size 3 and a constrained
layout.
from carabiner.mpl import grid
fig, ax = grid() # 1x1 grid
fig, ax = grid(ncol=3) # 1x3 grid; figsize expands appropriately
fig, ax = grid(ncol=3, nrow=2, sharex=True) #additional parameters are passed to `plt.subplots()`
If you want to multiply an indicator matrix, i.e. a sparse matrix of zeros and ones with the same number of non-zero entries per row (as in linear models), as part of a Tensorflow model, this pattern will be faster than using tensorflow.SparseMatrix
if you convert the indicator matrix to a [n x 1]
matrix providing the index of the non-zero element per row.
Add to the issue tracker.
Available at ReadTheDocs.