Skip to content

satishgonella2024/ai-stock-advisor

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 

Repository files navigation

Real-Time AI Stock Advisor with Ollama (Llama 2) & Streamlit

This project provides real-time stock analysis and insights using large language models. It fetches stock data every minute, analyzes trends, and provides real-time, easy-to-understand explanations.

Features

  • Fetches real-time stock data for Apple (AAPL) and Dow Jones (DJI)
  • Calculates technical indicators (EMA, RSI, Bollinger Bands)
  • Generates natural language insights using Llama 2 via Ollama
  • Interactive Streamlit web application with auto-refresh

Prerequisites

  • Python 3.7 or higher
  • Ollama installed and configured
  • Git (optional, for version control)

Installation

Clone the Repository

git clone https://github.com/satishgonella2024/ai-stock-advisor.git
cd ai-stock-advisor

Set Up a Virtual Environment

python3 -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

Install Dependencies

pip install -r requirements.txt

Install and Configure Ollama

•	Install Ollama: Follow the instructions on the Ollama GitHub page.
•	Pull the Llama 2 Model:
ollama pull llama2

Start the Ollama Server:

ollama serve

Usage

Run the Streamlit application:

streamlit run app.py

Access the app in your web browser at http://localhost:8501.

Project Structure

ai-stock-advisor/
├── app.py
├── .gitignore
├── README.md
├── requirements.txt
└── venv/
•	app.py: Main application script
•	.gitignore: Specifies files for Git to ignore
•	README.md: Project documentation
•	requirements.txt: Python dependencies
•	venv/: Virtual environment directory (ignored by Git)

Contributing

Contributions are welcome! Please open an issue or submit a pull request.

License

This project is licensed under the MIT License. See the LICENSE file for details.

Disclaimer

This application is for educational purposes and does not constitute financial advice.

Acknowledgments

•	Ollama for the Llama 2 model
•	Streamlit for the web framework
•	Yahoo Finance for stock data via yfinance

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages