Skip to content

Commit

Permalink
revert: "feat(lidar_transfusion): update TransFusion-L model" (autowa…
Browse files Browse the repository at this point in the history
…refoundation#1478)

Revert "feat(lidar_transfusion): update TransFusion-L model"
  • Loading branch information
shmpwk authored Aug 20, 2024
1 parent 4a0a76a commit e3f5099
Show file tree
Hide file tree
Showing 24 changed files with 115 additions and 1,542 deletions.
52 changes: 0 additions & 52 deletions perception/lidar_transfusion/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -137,58 +137,6 @@ if(TRT_AVAIL AND CUDA_AVAIL AND CUDNN_AVAIL)
if(BUILD_TESTING)
find_package(ament_lint_auto REQUIRED)
ament_lint_auto_find_test_dependencies()

find_package(ament_cmake_gtest REQUIRED)
ament_auto_add_gtest(test_detection_class_remapper
test/test_detection_class_remapper.cpp
)
ament_auto_add_gtest(test_ros_utils
test/test_ros_utils.cpp
)
ament_auto_add_gtest(test_nms
test/test_nms.cpp
)

# Temporary disabled, tracked by:
# https://github.com/autowarefoundation/autoware.universe/issues/7724
# ament_auto_add_gtest(test_voxel_generator
# test/test_voxel_generator.cpp
# )

# # preprocess kernel test
# add_executable(test_preprocess_kernel
# test/test_preprocess_kernel.cpp
# )
# target_include_directories(test_preprocess_kernel PUBLIC
# ${test_preprocess_kernel_SOURCE_DIR}
# )
# target_link_libraries(test_preprocess_kernel
# transfusion_cuda_lib
# gtest
# gtest_main
# )
# ament_add_test(test_preprocess_kernel
# GENERATE_RESULT_FOR_RETURN_CODE_ZERO
# COMMAND "$<TARGET_FILE:test_preprocess_kernel>"
# )

# # postprocess kernel test
# add_executable(test_postprocess_kernel
# test/test_postprocess_kernel.cpp
# )
# target_include_directories(test_postprocess_kernel PUBLIC
# ${test_postprocess_kernel_SOURCE_DIR}
# )
# target_link_libraries(test_postprocess_kernel
# transfusion_cuda_lib
# gtest
# gtest_main
# )
# ament_add_test(test_postprocess_kernel
# GENERATE_RESULT_FOR_RETURN_CODE_ZERO
# COMMAND "$<TARGET_FILE:test_postprocess_kernel>"
# )

endif()

ament_auto_package(
Expand Down
22 changes: 2 additions & 20 deletions perception/lidar_transfusion/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -59,31 +59,13 @@ ros2 launch lidar_transfusion lidar_transfusion.launch.xml log_level:=debug

## Assumptions / Known limits

This library operates on raw cloud data (bytes). It is assumed that the input pointcloud message has following format:

```python
[
sensor_msgs.msg.PointField(name='x', offset=0, datatype=7, count=1),
sensor_msgs.msg.PointField(name='y', offset=4, datatype=7, count=1),
sensor_msgs.msg.PointField(name='z', offset=8, datatype=7, count=1),
sensor_msgs.msg.PointField(name='intensity', offset=12, datatype=2, count=1)
]
```

This input may consist of other fields as well - shown format is required minimum.
For debug purposes, you can validate your pointcloud topic using simple command:

```bash
ros2 topic echo <input_topic> --field fields
```

## Trained Models

You can download the onnx format of trained models by clicking on the links below.

- TransFusion: [transfusion.onnx](https://awf.ml.dev.web.auto/perception/models/transfusion/t4xx1_90m/v2/transfusion.onnx)
- TransFusion: [transfusion.onnx](https://awf.ml.dev.web.auto/perception/models/transfusion/v1/transfusion.onnx)

The model was trained in TIER IV's internal database (~11k lidar frames) for 50 epochs.
The model was trained in TIER IV's internal database (~11k lidar frames) for 20 epochs.

### Changelog

Expand Down
7 changes: 3 additions & 4 deletions perception/lidar_transfusion/config/transfusion.param.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -4,9 +4,8 @@
class_names: ["CAR", "TRUCK", "BUS", "BICYCLE", "PEDESTRIAN"]
trt_precision: fp16
voxels_num: [5000, 30000, 60000] # [min, opt, max]
point_cloud_range: [-92.16, -92.16, -3.0, 92.16, 92.16, 7.0] # [x_min, y_min, z_min, x_max, y_max, z_max]
voxel_size: [0.24, 0.24, 10.0] # [x, y, z]
num_proposals: 500
point_cloud_range: [-76.8, -76.8, -3.0, 76.8, 76.8, 5.0] # [x_min, y_min, z_min, x_max, y_max, z_max]
voxel_size: [0.3, 0.3, 8.0] # [x, y, z]
onnx_path: "$(var model_path)/transfusion.onnx"
engine_path: "$(var model_path)/transfusion.engine"
# pre-process params
Expand All @@ -18,4 +17,4 @@
iou_nms_search_distance_2d: 10.0
iou_nms_threshold: 0.1
yaw_norm_thresholds: [0.3, 0.3, 0.3, 0.3, 0.0] # refers to the class_names
score_threshold: 0.1
score_threshold: 0.2
Original file line number Diff line number Diff line change
Expand Up @@ -51,7 +51,7 @@ class DensificationParam

struct PointCloudWithTransform
{
cuda::unique_ptr<uint8_t[]> data_d{nullptr};
cuda::unique_ptr<float[]> points_d{nullptr};
std_msgs::msg::Header header;
size_t num_points{0};
Eigen::Affine3f affine_past2world;
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -56,8 +56,12 @@ class PreprocessCuda
unsigned int * mask, float * voxels, unsigned int * pillar_num, float * voxel_features,
unsigned int * voxel_num, unsigned int * voxel_idxs);

// cudaError_t generateVoxelsInput_launch(
// uint8_t * cloud_data, CloudInfo & cloud_info, unsigned int points_agg, unsigned int
// points_size, float time_lag, float * affine_transform, float * points);

cudaError_t generateSweepPoints_launch(
const uint8_t * input_data, size_t points_size, int input_point_step, float time_lag,
const float * input_points, size_t points_size, int input_point_step, float time_lag,
const float * transform, float * output_points);

private:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -18,17 +18,15 @@
#include "lidar_transfusion/cuda_utils.hpp"
#include "lidar_transfusion/preprocess/pointcloud_densification.hpp"
#include "lidar_transfusion/preprocess/preprocess_kernel.hpp"
#include "lidar_transfusion/ros_utils.hpp"
#include "lidar_transfusion/transfusion_config.hpp"
#include "lidar_transfusion/utils.hpp"

#ifdef ROS_DISTRO_GALACTIC
#include <tf2_eigen/tf2_eigen.h>
#else
#include <tf2_eigen/tf2_eigen.hpp>
#endif

#include <autoware_point_types/types.hpp>

#include <sensor_msgs/msg/point_cloud2.hpp>

#include <memory>
Expand All @@ -38,8 +36,8 @@

namespace lidar_transfusion
{
constexpr size_t AFF_MAT_SIZE = 16; // 4x4 matrix
constexpr size_t MAX_CLOUD_STEP_SIZE = sizeof(autoware_point_types::PointXYZIRCAEDT);
constexpr size_t AFF_MAT_SIZE = 16; // 4x4 matrix
constexpr size_t MAX_CLOUD_STEP_SIZE = 35; // PointXYZIRCADT

class VoxelGenerator
{
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -17,84 +17,16 @@

#include "lidar_transfusion/utils.hpp"

#include <autoware_point_types/types.hpp>

#include <autoware_perception_msgs/msg/detected_object_kinematics.hpp>
#include <autoware_perception_msgs/msg/detected_objects.hpp>
#include <autoware_perception_msgs/msg/object_classification.hpp>
#include <autoware_perception_msgs/msg/shape.hpp>
#include <sensor_msgs/msg/point_field.hpp>

#include <cstdint>
#include <string>
#include <vector>

#define CHECK_OFFSET(offset, structure, field) \
static_assert( \
offsetof(structure, field) == offset, \
"Offset of " #field " in " #structure " does not match expected offset.")
#define CHECK_TYPE(type, structure, field) \
static_assert( \
std::is_same<decltype(structure::field), type>::value, \
"Type of " #field " in " #structure " does not match expected type.")
#define CHECK_FIELD(offset, type, structure, field) \
CHECK_OFFSET(offset, structure, field); \
CHECK_TYPE(type, structure, field)

namespace lidar_transfusion
{
using sensor_msgs::msg::PointField;

CHECK_FIELD(0, float, autoware_point_types::PointXYZIRCAEDT, x);
CHECK_FIELD(4, float, autoware_point_types::PointXYZIRCAEDT, y);
CHECK_FIELD(8, float, autoware_point_types::PointXYZIRCAEDT, z);
CHECK_FIELD(12, uint8_t, autoware_point_types::PointXYZIRCAEDT, intensity);

struct CloudInfo
{
uint32_t x_offset{0};
uint32_t y_offset{sizeof(float)};
uint32_t z_offset{sizeof(float) * 2};
uint32_t intensity_offset{sizeof(float) * 3};
uint8_t x_datatype{PointField::FLOAT32};
uint8_t y_datatype{PointField::FLOAT32};
uint8_t z_datatype{PointField::FLOAT32};
uint8_t intensity_datatype{PointField::UINT8};
uint8_t x_count{1};
uint8_t y_count{1};
uint8_t z_count{1};
uint8_t intensity_count{1};
uint32_t point_step{sizeof(autoware_point_types::PointXYZIRCAEDT)};
bool is_bigendian{false};

bool operator!=(const CloudInfo & rhs) const
{
return x_offset != rhs.x_offset || y_offset != rhs.y_offset || z_offset != rhs.z_offset ||
intensity_offset != rhs.intensity_offset || x_datatype != rhs.x_datatype ||
y_datatype != rhs.y_datatype || z_datatype != rhs.z_datatype ||
intensity_datatype != rhs.intensity_datatype || x_count != rhs.x_count ||
y_count != rhs.y_count || z_count != rhs.z_count ||
intensity_count != rhs.intensity_count || is_bigendian != rhs.is_bigendian;
}

friend std::ostream & operator<<(std::ostream & os, const CloudInfo & info)
{
os << "x_offset: " << static_cast<int>(info.x_offset) << std::endl;
os << "y_offset: " << static_cast<int>(info.y_offset) << std::endl;
os << "z_offset: " << static_cast<int>(info.z_offset) << std::endl;
os << "intensity_offset: " << static_cast<int>(info.intensity_offset) << std::endl;
os << "x_datatype: " << static_cast<int>(info.x_datatype) << std::endl;
os << "y_datatype: " << static_cast<int>(info.y_datatype) << std::endl;
os << "z_datatype: " << static_cast<int>(info.z_datatype) << std::endl;
os << "intensity_datatype: " << static_cast<int>(info.intensity_datatype) << std::endl;
os << "x_count: " << static_cast<int>(info.x_count) << std::endl;
os << "y_count: " << static_cast<int>(info.y_count) << std::endl;
os << "z_count: " << static_cast<int>(info.z_count) << std::endl;
os << "intensity_count: " << static_cast<int>(info.intensity_count) << std::endl;
os << "is_bigendian: " << static_cast<int>(info.is_bigendian) << std::endl;
return os;
}
};

void box3DToDetectedObject(
const Box3D & box3d, const std::vector<std::string> & class_names,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -26,9 +26,8 @@ class TransfusionConfig
public:
TransfusionConfig(
const std::vector<int64_t> & voxels_num, const std::vector<double> & point_cloud_range,
const std::vector<double> & voxel_size, const int num_proposals,
const float circle_nms_dist_threshold, const std::vector<double> & yaw_norm_thresholds,
const float score_threshold)
const std::vector<double> & voxel_size, const float circle_nms_dist_threshold,
const std::vector<double> & yaw_norm_thresholds, const float score_threshold)
{
if (voxels_num.size() == 3) {
max_voxels_ = voxels_num[2];
Expand Down Expand Up @@ -62,9 +61,6 @@ class TransfusionConfig
voxel_y_size_ = static_cast<float>(voxel_size[1]);
voxel_z_size_ = static_cast<float>(voxel_size[2]);
}
if (num_proposals > 0) {
num_proposals_ = num_proposals;
}
if (score_threshold > 0.0) {
score_threshold_ = score_threshold;
}
Expand All @@ -80,9 +76,6 @@ class TransfusionConfig
grid_x_size_ = static_cast<std::size_t>((max_x_range_ - min_x_range_) / voxel_x_size_);
grid_y_size_ = static_cast<std::size_t>((max_y_range_ - min_y_range_) / voxel_y_size_);
grid_z_size_ = static_cast<std::size_t>((max_z_range_ - min_z_range_) / voxel_z_size_);

feature_x_size_ = grid_x_size_ / out_size_factor_;
feature_y_size_ = grid_y_size_ / out_size_factor_;
}

///// INPUT PARAMETERS /////
Expand Down Expand Up @@ -114,7 +107,7 @@ class TransfusionConfig
const std::size_t out_size_factor_{4};
const std::size_t max_num_points_per_pillar_{points_per_voxel_};
const std::size_t num_point_values_{4};
std::size_t num_proposals_{200};
const std::size_t num_proposals_{200};
// the number of feature maps for pillar scatter
const std::size_t num_feature_scatter_{pillar_feature_size_};
// the score threshold for classification
Expand Down
46 changes: 46 additions & 0 deletions perception/lidar_transfusion/include/lidar_transfusion/utils.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,52 @@ struct Box3D
float yaw;
};

struct CloudInfo
{
uint32_t x_offset;
uint32_t y_offset;
uint32_t z_offset;
uint32_t intensity_offset;
uint8_t x_datatype;
uint8_t y_datatype;
uint8_t z_datatype;
uint8_t intensity_datatype;
uint8_t x_count;
uint8_t y_count;
uint8_t z_count;
uint8_t intensity_count;
uint32_t point_step;
bool is_bigendian;

CloudInfo()
: x_offset(0),
y_offset(4),
z_offset(8),
intensity_offset(12),
x_datatype(7),
y_datatype(7),
z_datatype(7),
intensity_datatype(7),
x_count(1),
y_count(1),
z_count(1),
intensity_count(1),
point_step(16),
is_bigendian(false)
{
}

bool operator!=(const CloudInfo & rhs) const
{
return x_offset != rhs.x_offset || y_offset != rhs.y_offset || z_offset != rhs.z_offset ||
intensity_offset != rhs.intensity_offset || x_datatype != rhs.x_datatype ||
y_datatype != rhs.y_datatype || z_datatype != rhs.z_datatype ||
intensity_datatype != rhs.intensity_datatype || x_count != rhs.x_count ||
y_count != rhs.y_count || z_count != rhs.z_count ||
intensity_count != rhs.intensity_count || is_bigendian != rhs.is_bigendian;
}
};

enum NetworkIO { voxels = 0, num_points, coors, cls_score, dir_pred, bbox_pred, ENUM_SIZE };

// cspell: ignore divup
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -93,15 +93,16 @@ void PointCloudDensification::enqueue(
affine_world2current_ = affine_world2current;
current_timestamp_ = rclcpp::Time(msg.header.stamp).seconds();

auto data_d = cuda::make_unique<uint8_t[]>(
sizeof(uint8_t) * msg.width * msg.height * msg.point_step / sizeof(uint8_t));
assert(sizeof(uint8_t) * msg.width * msg.height * msg.point_step % sizeof(float) == 1);
auto points_d = cuda::make_unique<float[]>(
sizeof(uint8_t) * msg.width * msg.height * msg.point_step / sizeof(float));

CHECK_CUDA_ERROR(cudaMemcpyAsync(
data_d.get(), msg.data.data(), sizeof(uint8_t) * msg.width * msg.height * msg.point_step,
points_d.get(), msg.data.data(), sizeof(uint8_t) * msg.width * msg.height * msg.point_step,
cudaMemcpyHostToDevice, stream_));

PointCloudWithTransform pointcloud = {
std::move(data_d), msg.header, msg.width * msg.height, affine_world2current.inverse()};
std::move(points_d), msg.header, msg.width * msg.height, affine_world2current.inverse()};

pointcloud_cache_.push_front(std::move(pointcloud));
}
Expand Down
Loading

0 comments on commit e3f5099

Please sign in to comment.