A smart Retrieval-Augmented Generation (RAG) application using:
- Cortex Search for document retrieval
- Mistral LLM on Snowflake Cortex for response generation
- Streamlit Community Cloud for the front-end interface
- Retrieve relevant documents using Cortex Search
- Generate context-aware answers with Mistral LLM
- Interactive and user-friendly web app built with Streamlit
- Enter a query in the Streamlit interface.
- Cortex Search retrieves the top relevant documents.
- Mistral LLM processes the retrieved documents and generates a response.
- The app displays both the retrieved documents and the generated response.
- Python 3.x installed
- API access for Cortex Search and Mistral LLM on Snowflake Cortex
- A dataset indexed in Cortex Search
- Required Python packages:
streamlit
,requests
,snowflake-snowpark-python
Clone this repository:
- git clone https://github.com/sahasraa/RAG-n-ROLL-Assistant.git
- cd rag-n-roll-assistant