Skip to content
This repository has been archived by the owner on Jan 30, 2023. It is now read-only.

Commit

Permalink
Merge #30022
Browse files Browse the repository at this point in the history
  • Loading branch information
Matthias Koeppe committed Aug 28, 2021
2 parents dad6184 + c08a8b5 commit b0ba835
Show file tree
Hide file tree
Showing 6 changed files with 313 additions and 154 deletions.
16 changes: 16 additions & 0 deletions src/sage/libs/flint/ulong_extras.pyx
Original file line number Diff line number Diff line change
@@ -0,0 +1,16 @@
def n_factor_to_list(unsigned long n, int proved):
"""
A wrapper around ``n_factor``.
EXAMPLES::
sage: from sage.libs.flint.ulong_extras import n_factor_to_list
sage: n_factor_to_list(60, 20)
[(2, 2), (3, 1), (5, 1)]
sage: n_factor_to_list((10**6).next_prime() + 1, 0)
[(2, 2), (53, 2), (89, 1)]
"""
cdef n_factor_t f
n_factor_init(&f)
n_factor(&f, n, proved)
return [(f.p[i], int(f.exp[i])) for i in range(f.num)]
10 changes: 10 additions & 0 deletions src/sage/libs/pari/convert_sage.pxd
Original file line number Diff line number Diff line change
@@ -1,3 +1,13 @@
from cypari2.gen cimport Gen
from sage.rings.integer cimport Integer
from sage.rings.rational cimport Rational

cpdef gen_to_sage(Gen z, locals=*)

cpdef set_integer_from_gen(Integer self, Gen x)
cpdef Gen new_gen_from_integer(Integer self)
cpdef set_rational_from_gen(Rational self, Gen x)
cpdef Gen new_gen_from_rational(Rational self)

cpdef pari_is_prime(Integer p)
cpdef pari_is_prime_power(Integer q, bint get_data)
220 changes: 216 additions & 4 deletions src/sage/libs/pari/convert_sage.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -14,15 +14,21 @@ Convert PARI objects to Sage types
# http://www.gnu.org/licenses/
#*****************************************************************************

from cysignals.signals cimport sig_on, sig_off

from cypari2.types cimport (GEN, typ, t_INT, t_FRAC, t_REAL, t_COMPLEX,
t_INTMOD, t_PADIC, t_INFINITY, t_VEC, t_COL,
t_VECSMALL, t_MAT, t_STR,
lg, precp)
from cypari2.pari_instance cimport prec_words_to_bits
from cypari2.paridecl cimport gel, inf_get_sign

from sage.rings.integer cimport Integer
from sage.rings.rational cimport Rational
from cypari2.paridecl cimport *
from cypari2.gen cimport objtogen
from cypari2.stack cimport new_gen
from .convert_gmp cimport INT_to_mpz, new_gen_from_mpz_t, new_gen_from_mpq_t, INTFRAC_to_mpq

from sage.libs.gmp.mpz cimport mpz_fits_slong_p, mpz_sgn, mpz_get_ui, mpz_set, mpz_set_si
from sage.libs.gmp.mpq cimport mpq_denref, mpq_numref
from sage.rings.integer cimport smallInteger
from sage.rings.all import RealField, ComplexField, QuadraticField
from sage.matrix.args cimport MatrixArgs
from sage.rings.padics.factory import Qp
Expand Down Expand Up @@ -315,3 +321,209 @@ cpdef gen_to_sage(Gen z, locals=None):
from sage.misc.sage_eval import sage_eval
locals = {} if locals is None else locals
return sage_eval(str(z), locals=locals)


cpdef set_integer_from_gen(Integer self, Gen x):
r"""
EXAMPLES::
sage: [Integer(pari(x)) for x in [1, 2^60, 2., GF(3)(1), GF(9,'a')(2)]]
[1, 1152921504606846976, 2, 1, 2]
sage: Integer(pari(2.1)) # indirect doctest
Traceback (most recent call last):
...
TypeError: Attempt to coerce non-integral real number to an Integer
"""
# Simplify and lift until we get an integer
while typ((<Gen>x).g) != t_INT:
x = x.simplify()
paritype = typ((<Gen>x).g)
if paritype == t_INT:
break
elif paritype == t_REAL:
# Check that the fractional part is zero
if not x.frac().gequal0():
raise TypeError("Attempt to coerce non-integral real number to an Integer")
# floor yields an integer
x = x.floor()
break
elif paritype == t_PADIC:
if x._valp() < 0:
raise TypeError("Cannot convert p-adic with negative valuation to an integer")
# Lifting a PADIC yields an integer
x = x.lift()
break
elif paritype == t_INTMOD:
# Lifting an INTMOD yields an integer
x = x.lift()
break
elif paritype == t_POLMOD:
x = x.lift()
elif paritype == t_FFELT:
# x = (f modulo defining polynomial of finite field);
# we extract f.
sig_on()
x = new_gen(FF_to_FpXQ_i((<Gen>x).g))
else:
raise TypeError("Unable to coerce PARI %s to an Integer"%x)

# Now we have a true PARI integer, convert it to Sage
INT_to_mpz(self.value, (<Gen>x).g)


cpdef Gen new_gen_from_integer(Integer self):
"""
TESTS::
sage: Rational(pari(2)) # indirect doctest
2
sage: Rational(pari(-1))
-1
"""
return new_gen_from_mpz_t(self.value)


cpdef set_rational_from_gen(Rational self, Gen x):
r"""
EXAMPLES::
sage: [Rational(pari(x)) for x in [1, 1/2, 2^60, 2., GF(3)(1), GF(9,'a')(2)]]
[1, 1/2, 1152921504606846976, 2, 1, 2]
sage: Rational(pari(2.1)) # indirect doctest
Traceback (most recent call last):
...
TypeError: Attempt to coerce non-integral real number to an Integer
"""
x = x.simplify()
if is_rational_t(typ((<Gen>x).g)):
INTFRAC_to_mpq(self.value, (<Gen>x).g)
else:
a = Integer(x)
mpz_set(mpq_numref(self.value), a.value)
mpz_set_si(mpq_denref(self.value), 1)


cpdef Gen new_gen_from_rational(Rational self):
"""
TESTS::
sage: Integer(pari(2/2)) # indirect doctest
1
sage: Rational(pari(-1/2))
-1/2
"""
return new_gen_from_mpq_t(self.value)


cpdef list pari_divisors_small(Integer self):
r"""
Return the list of divisors of this number using PARI ``divisorsu``.
.. SEEALSO::
This method is better used through :meth:`sage.rings.integer.Integer.divisors`.
EXAMPLES::
sage: from sage.libs.pari.convert_sage import pari_divisors_small
sage: pari_divisors_small(4)
[1, 2, 4]
The integer must fit into an unsigned long::
sage: pari_divisors_small(-4)
Traceback (most recent call last):
...
AssertionError
sage: pari_divisors_small(2**65)
Traceback (most recent call last):
...
AssertionError
"""
# we need n to fit into a long and not a unsigned long in order to use
# smallInteger
assert mpz_fits_slong_p(self.value) and mpz_sgn(self.value) > 0

cdef unsigned long n = mpz_get_ui(self.value)

global avma
cdef pari_sp ltop = avma
cdef GEN d
cdef list output

try:
sig_on()
d = divisorsu(n)
sig_off()
output = [smallInteger(d[i]) for i in range(1,lg(d))]
return output
finally:
avma = ltop


cpdef pari_is_prime(Integer p):
r"""
Return whether ``p`` is a prime.
The caller must ensure that ``p.value`` fits in a long.
EXAMPLES::
sage: from sage.libs.pari.convert_sage import pari_is_prime
sage: pari_is_prime(2)
True
sage: pari_is_prime(3)
True
sage: pari_is_prime(1)
False
sage: pari_is_prime(4)
False
Its recommended to use :meth:`sage.rings.integer.Integer.is_prime`, which checks overflow.
The following is incorrect, because the number does not fit into a long::
sage: pari_is_prime(2**64 + 2)
True
"""
return bool(uisprime(mpz_get_ui(p.value)))


cpdef pari_is_prime_power(Integer q, bint get_data):
r"""
Return whether ``q`` is a prime power.
The caller must ensure that ``q.value`` fits in a long.
OUTPUT:
If ``get_data`` return a tuple of the prime and the exponent.
Otherwise return a boolean.
EXAMPLES::
sage: from sage.libs.pari.convert_sage import pari_is_prime_power
sage: pari_is_prime_power(2, False)
True
sage: pari_is_prime_power(2, True)
(2, 1)
sage: pari_is_prime_power(4, False)
True
sage: pari_is_prime_power(4, True)
(2, 2)
sage: pari_is_prime_power(6, False)
False
sage: pari_is_prime_power(6, True)
(6, 0)
Its recommended to use :meth:`sage.rings.integer.Integer.is_prime_power`, which checks overflow.
The following is incorrect, because the number does not fit into a long::
sage: pari_is_prime_power(2**64 + 2, False)
True
"""
cdef long p, n
n = uisprimepower(mpz_get_ui(q.value), <ulong*>(&p))
if n:
return (smallInteger(p), smallInteger(n)) if get_data else True
else:
return (q, smallInteger(0)) if get_data else False
1 change: 0 additions & 1 deletion src/sage/rings/integer.pxd
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,6 @@ cdef class Integer(EuclideanDomainElement):
cdef bint _is_power_of(Integer self, Integer n)

cdef bint _pseudoprime_is_prime(self, proof) except -1
cpdef list _pari_divisors_small(self)

cdef int mpz_set_str_python(mpz_ptr z, char* s, int base) except -1

Expand Down
Loading

0 comments on commit b0ba835

Please sign in to comment.