Skip to content
This repository has been archived by the owner on Jan 30, 2023. It is now read-only.

Commit

Permalink
move facet adjacency matrix to combinatorial polyhedron
Browse files Browse the repository at this point in the history
  • Loading branch information
Jonathan Kliem committed Dec 10, 2021
1 parent 7c0dd1c commit 5b854ac
Show file tree
Hide file tree
Showing 2 changed files with 57 additions and 39 deletions.
51 changes: 12 additions & 39 deletions src/sage/geometry/polyhedron/base3.py
Original file line number Diff line number Diff line change
Expand Up @@ -967,7 +967,7 @@ def vertex_adjacency_matrix(self):
@cached_method
def facet_adjacency_matrix(self):
"""
Return the adjacency matrix for the facets and hyperplanes.
Return the adjacency matrix for the facets.
EXAMPLES::
Expand All @@ -979,6 +979,13 @@ def facet_adjacency_matrix(self):
[1 1 1 0 1]
[1 1 1 1 0]
sage: p = Polyhedron(vertices=[(0,0),(1,0),(0,1)])
sage: p.facet_adjacency_matrix()
[0 1 1]
[1 0 1]
[1 1 0]
The facet adjacency matrix has base ring integers. This way one can express various
counting questions::
Expand All @@ -992,52 +999,18 @@ def facet_adjacency_matrix(self):
Check that :trac:`28828` is fixed::
sage: s4.facet_adjacency_matrix().is_immutable()
True
"""
return self._facet_adjacency_matrix()

def _facet_adjacency_matrix(self):
"""
Compute the facet adjacency matrix in case it has not been
computed during initialization.
EXAMPLES::
sage: p = Polyhedron(vertices=[(0,0),(1,0),(0,1)])
sage: p._facet_adjacency_matrix()
[0 1 1]
[1 0 1]
[1 1 0]
sage: s4.facet_adjacency_matrix().is_immutable()
True
Checks that :trac:`22455` is fixed::
sage: s = polytopes.simplex(2)
sage: s._facet_adjacency_matrix()
sage: s.facet_adjacency_matrix()
[0 1 1]
[1 0 1]
[1 1 0]
"""
# TODO: This implementation computes the whole face lattice,
# which is much more information than necessary.
M = matrix(ZZ, self.n_facets(), self.n_facets(), 0)
codim = self.ambient_dim()-self.dim()

def set_adjacent(h1, h2):
if h1 is h2:
return
i = h1.index() - codim
j = h2.index() - codim
M[i, j] = 1
M[j, i] = 1

for face in self.faces(self.dim()-2):
Hrep = face.ambient_Hrepresentation()
assert(len(Hrep) == codim+2)
set_adjacent(Hrep[-2], Hrep[-1])
M.set_immutable()
return M
return self.combinatorial_polyhedron().facet_adjacency_matrix()

def a_maximal_chain(self):
r"""
Expand Down
45 changes: 45 additions & 0 deletions src/sage/geometry/polyhedron/combinatorial_polyhedron/base.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -1432,6 +1432,51 @@ cdef class CombinatorialPolyhedron(SageObject):
return tuple((facet_one(i), facet_two(i))
for i in range(n_ridges))

@cached_method
def facet_adjacency_matrix(self):
"""
Return the binary matrix of facet adjacencies.
.. SEEALSO::
:meth:`~sage.geometry.polyhedron.base.Polyhedron_base.vertex_adjacency_matrix`.
EXAMPLES::
sage: P = polytopes.cube()
sage: C = P.combinatorial_polyhedron()
sage: C.facet_adjacency_matrix()
[0 1 1 0 1 1]
[1 0 1 1 1 0]
[1 1 0 1 0 1]
[0 1 1 0 1 1]
[1 1 0 1 0 1]
[1 0 1 1 1 0]
TESTS::
sage: CombinatorialPolyhedron(-1).facet_adjacency_matrix()
[]
sage: CombinatorialPolyhedron(0).facet_adjacency_matrix()
[]
sage: polytopes.cube().facet_adjacency_matrix().is_immutable()
True
"""
from sage.rings.integer_ring import ZZ
from sage.matrix.constructor import matrix
cdef Matrix_integer_dense adjacency_matrix = matrix(
ZZ, self.n_facets(), self.n_facets(), 0)
cdef size_t i, a, b

self._compute_ridges(-1)
for i in range(self._n_ridges):
a = self._get_edge(self._ridges, i, 0)
b = self._get_edge(self._ridges, i, 1)
adjacency_matrix.set_unsafe_si(a, b, 1)
adjacency_matrix.set_unsafe_si(b, a, 1)
adjacency_matrix.set_immutable()
return adjacency_matrix

def facet_graph(self, names=True):
r"""
Return the facet graph.
Expand Down

0 comments on commit 5b854ac

Please sign in to comment.