Skip to content
This repository has been archived by the owner on Jan 30, 2023. It is now read-only.

Commit

Permalink
Trac #32195: fixing some details about doc formatting
Browse files Browse the repository at this point in the history
* missing colon after INPUT
* spurious space inside EXAMPLES::

URL: https://trac.sagemath.org/32195
Reported by: chapoton
Ticket author(s): Frédéric Chapoton
Reviewer(s): David Ayotte
  • Loading branch information
Release Manager committed Jul 24, 2021
2 parents 0e0fc20 + 32b992c commit 25ff4f4
Show file tree
Hide file tree
Showing 20 changed files with 56 additions and 58 deletions.
6 changes: 3 additions & 3 deletions build/pkgs/configure/checksums.ini
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
tarball=configure-VERSION.tar.gz
sha1=ca26c4f96653636f909240b6e8d94469eb126f6d
md5=207cc9ebb670913345959e823d283436
cksum=3989786075
sha1=694ed11a1e402aa7714737ea571ca38845fe425b
md5=35e45f13544608d4e981acee1065ce88
cksum=98651158
2 changes: 1 addition & 1 deletion build/pkgs/configure/package-version.txt
Original file line number Diff line number Diff line change
@@ -1 +1 @@
f1833cfe2f1b63be4dcb4fffa849464c3a631c6f
47955602029e3ee3ac6477115cbc5d5e72956ee6
4 changes: 2 additions & 2 deletions src/doc/en/developer/doctesting.rst
Original file line number Diff line number Diff line change
Expand Up @@ -1010,8 +1010,8 @@ a Python exception occurs. As an example, I modified
152 ainvs = [K(0),K(0),K(0)] + ainvs
153 self.__ainvs = tuple(ainvs)
154 if self.discriminant() == 0:
155 raise ArithmeticError, \
156 -> "Invariants %s define a singular curve."%ainvs
155 raise ArithmeticError(
156 -> "Invariants %s define a singular curve."%ainvs)
157 PP = projective_space.ProjectiveSpace(2, K, names='xyz');
158 x, y, z = PP.coordinate_ring().gens()
159 a1, a2, a3, a4, a6 = ainvs
Expand Down
6 changes: 3 additions & 3 deletions src/sage/algebras/free_algebra_quotient.py
Original file line number Diff line number Diff line change
Expand Up @@ -145,15 +145,15 @@ def __init__(self, A, mons, mats, names):
raise TypeError("Argument A must be an algebra.")
R = A.base_ring()
# if not R.is_field(): # TODO: why?
# raise TypeError, "Base ring of argument A must be a field."
# raise TypeError("Base ring of argument A must be a field.")
n = A.ngens()
assert n == len(mats)
self.__free_algebra = A
self.__ngens = n
self.__dim = len(mons)
self.__module = FreeModule(R,self.__dim)
self.__module = FreeModule(R, self.__dim)
self.__matrix_action = mats
self.__monomial_basis = mons # elements of free monoid
self.__monomial_basis = mons # elements of free monoid
Algebra.__init__(self, R, names, normalize=True)

def _element_constructor_(self, x):
Expand Down
8 changes: 3 additions & 5 deletions src/sage/algebras/nil_coxeter_algebra.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,18 +65,16 @@ def __init__(self, W, base_ring = QQ, prefix='u'):
self._base_ring = base_ring
self._cartan_type = W.cartan_type()
H = IwahoriHeckeAlgebra(W, 0, 0, base_ring=base_ring)
super(IwahoriHeckeAlgebra.T,self).__init__(H, prefix=prefix)
super(IwahoriHeckeAlgebra.T, self).__init__(H, prefix=prefix)

def _repr_(self):
r"""
EXAMPLES ::
EXAMPLES::
sage: NilCoxeterAlgebra(WeylGroup(['A',3,1])) # indirect doctest
The Nil-Coxeter Algebra of Type A3~ over Rational Field
"""

return "The Nil-Coxeter Algebra of Type %s over %s"%(self._cartan_type._repr_(compact=True), self.base_ring())
return "The Nil-Coxeter Algebra of Type %s over %s" % (self._cartan_type._repr_(compact=True), self.base_ring())

def homogeneous_generator_noncommutative_variables(self, r):
r"""
Expand Down
4 changes: 2 additions & 2 deletions src/sage/algebras/rational_cherednik_algebra.py
Original file line number Diff line number Diff line change
Expand Up @@ -184,11 +184,11 @@ def _reflections(self):
d[s] = (r, r.associated_coroot(), c)
return d

def _repr_(self):
def _repr_(self) -> str:
r"""
Return a string representation of ``self``.
EXAMPLES ::
EXAMPLES::
sage: RationalCherednikAlgebra(['A',4], 2, 1, QQ)
Rational Cherednik Algebra of type ['A', 4] with c=2 and t=1
Expand Down
8 changes: 4 additions & 4 deletions src/sage/combinat/sf/hall_littlewood.py
Original file line number Diff line number Diff line change
Expand Up @@ -66,7 +66,7 @@ def __repr__(self):
- a string representing the class
EXAMPLES ::
EXAMPLES::
sage: SymmetricFunctions(QQ).hall_littlewood(1)
Hall-Littlewood polynomials with t=1 over Rational Field
Expand Down Expand Up @@ -102,7 +102,7 @@ def symmetric_function_ring( self ):
- returns the ring of symmetric functions
EXAMPLES ::
EXAMPLES::
sage: HL = SymmetricFunctions(FractionField(QQ['t'])).hall_littlewood()
sage: HL.symmetric_function_ring()
Expand All @@ -123,7 +123,7 @@ def base_ring( self ):
The base ring of the symmetric functions.
EXAMPLES ::
EXAMPLES::
sage: HL = SymmetricFunctions(QQ['t'].fraction_field()).hall_littlewood(t=1)
sage: HL.base_ring()
Expand Down Expand Up @@ -532,7 +532,7 @@ def hall_littlewood_family(self):
- returns the class of Hall-Littlewood bases
EXAMPLES ::
EXAMPLES::
sage: HLP = SymmetricFunctions(FractionField(QQ['t'])).hall_littlewood(1).P()
sage: HLP.hall_littlewood_family()
Expand Down
20 changes: 10 additions & 10 deletions src/sage/combinat/sf/jack.py
Original file line number Diff line number Diff line change
Expand Up @@ -491,7 +491,7 @@ def __init__(self, jack):
- ``self`` -- a Jack basis of the symmetric functions
- ``jack`` -- a family of Jack symmetric function bases
EXAMPLES ::
EXAMPLES::
sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: JP = Sym.jack().P(); JP.base_ring()
Expand Down Expand Up @@ -537,7 +537,7 @@ def _m_to_self(self, x):
- an element of ``self`` equivalent to ``x``
EXAMPLES ::
EXAMPLES::
sage: Sym = SymmetricFunctions(QQ)
sage: JP = Sym.jack(t=2).P()
Expand Down Expand Up @@ -565,7 +565,7 @@ def _self_to_m(self, x):
- an element of the monomial basis equivalent to ``x``
EXAMPLES ::
EXAMPLES::
sage: Sym = SymmetricFunctions(QQ)
sage: JP = Sym.jack(t=2).P()
Expand Down Expand Up @@ -596,7 +596,7 @@ def c1(self, part):
- a polynomial in the parameter ``t`` which is equal to the scalar
product of ``J(part)`` and ``P(part)``
EXAMPLES ::
EXAMPLES::
sage: JP = SymmetricFunctions(FractionField(QQ['t'])).jack().P()
sage: JP.c1(Partition([2,1]))
Expand Down Expand Up @@ -1029,7 +1029,7 @@ def scalar_jack(self, x, t=None):
- ``self`` -- an element of the Jack `P` basis
- ``x`` -- an element of the `P` basis
EXAMPLES ::
EXAMPLES::
sage: JP = SymmetricFunctions(FractionField(QQ['t'])).jack().P()
sage: l = [JP(p) for p in Partitions(3)]
Expand Down Expand Up @@ -1234,7 +1234,7 @@ def _self_to_h( self, x ):
- an element of the homogeneous basis equivalent to ``x``
EXAMPLES ::
EXAMPLES::
sage: Sym = SymmetricFunctions(QQ)
sage: JQp = Sym.jack(t=2).Qp()
Expand Down Expand Up @@ -1262,7 +1262,7 @@ def _h_to_self( self, x ):
- an element of the Jack `Qp` basis equivalent to ``x``
EXAMPLES ::
EXAMPLES::
sage: Sym = SymmetricFunctions(QQ)
sage: JQp = Sym.jack(t=2).Qp()
Expand Down Expand Up @@ -1320,7 +1320,7 @@ def __init__(self, Sym):
- ``self`` -- a zonal basis of the symmetric functions
- ``Sym`` -- a ring of the symmetric functions
EXAMPLES ::
EXAMPLES::
sage: Z = SymmetricFunctions(QQ).zonal()
sage: Z([2])^2
Expand Down Expand Up @@ -1355,7 +1355,7 @@ def product(self, left, right):
the product of ``left`` and ``right`` expanded in the basis ``self``
EXAMPLES ::
EXAMPLES::
sage: Sym = SymmetricFunctions(QQ)
sage: Z = Sym.zonal()
Expand Down Expand Up @@ -1386,7 +1386,7 @@ def scalar_zonal(self, x):
- the scalar product between ``self`` and ``x``
EXAMPLES ::
EXAMPLES::
sage: Sym = SymmetricFunctions(QQ)
sage: Z = Sym.zonal()
Expand Down
2 changes: 1 addition & 1 deletion src/sage/combinat/sf/llt.py
Original file line number Diff line number Diff line change
Expand Up @@ -168,7 +168,7 @@ def symmetric_function_ring( self ):
- returns the symmetric function ring associated to ``self``.
EXAMPLES ::
EXAMPLES::
sage: L3 = SymmetricFunctions(FractionField(QQ['t'])).llt(3)
sage: L3.symmetric_function_ring()
Expand Down
12 changes: 6 additions & 6 deletions src/sage/combinat/sf/macdonald.py
Original file line number Diff line number Diff line change
Expand Up @@ -89,7 +89,7 @@ def __repr__(self):
- a string representing the Macdonald symmetric function family
EXAMPLES ::
EXAMPLES::
sage: t = QQ['t'].gen(); SymmetricFunctions(QQ['t'].fraction_field()).macdonald(q=t,t=1)
Macdonald polynomials with q=t and t=1 over Fraction Field of Univariate Polynomial Ring in t over Rational Field
Expand All @@ -107,7 +107,7 @@ def __init__(self, Sym, q='q', t='t'):
- ``self`` -- a family of Macdonald symmetric function bases
EXAMPLES ::
EXAMPLES::
sage: t = QQ['t'].gen(); SymmetricFunctions(QQ['t'].fraction_field()).macdonald(q=t,t=1)
Macdonald polynomials with q=t and t=1 over Fraction Field of Univariate Polynomial Ring in t over Rational Field
Expand Down Expand Up @@ -144,7 +144,7 @@ def base_ring( self ):
- the base ring associated to the corresponding symmetric function ring
EXAMPLES ::
EXAMPLES::
sage: Sym = SymmetricFunctions(QQ['q'].fraction_field())
sage: Mac = Sym.macdonald(t=0)
Expand All @@ -166,7 +166,7 @@ def symmetric_function_ring( self ):
- the symmetric function ring associated to the Macdonald bases
EXAMPLES ::
EXAMPLES::
sage: Mac = SymmetricFunctions(QQ['q'].fraction_field()).macdonald(t=0)
sage: Mac.symmetric_function_ring()
Expand All @@ -187,7 +187,7 @@ def P(self):
- returns the `P` Macdonald basis of symmetric functions
EXAMPLES ::
EXAMPLES::
sage: Sym = SymmetricFunctions(FractionField(QQ['q','t']))
sage: P = Sym.macdonald().P(); P
Expand Down Expand Up @@ -914,7 +914,7 @@ def macdonald_family(self):
- the family of Macdonald symmetric functions associated to ``self``
EXAMPLES ::
EXAMPLES::
sage: MacP = SymmetricFunctions(QQ['q'].fraction_field()).macdonald(t=0).P()
sage: MacP.macdonald_family()
Expand Down
6 changes: 3 additions & 3 deletions src/sage/crypto/mq/rijndael_gf.py
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,7 @@
- Thomas Gagne (2015-06): initial version
EXAMPLES
EXAMPLES:
We build Rijndael-GF with a block length of 4 and a key length of 6::
Expand Down Expand Up @@ -1020,7 +1020,7 @@ def decrypt(self, ciphertext, key, format='hex'):
- A string in the format ``format`` of ``ciphertext`` decrypted with
key ``key``.
EXAMPLES ::
EXAMPLES::
sage: from sage.crypto.mq.rijndael_gf import RijndaelGF
sage: rgf = RijndaelGF(4, 4)
Expand Down Expand Up @@ -1473,7 +1473,7 @@ def compose(self, f, g, algorithm='encrypt', f_attr=None, g_attr=None):
then ``compose`` returns `g(f(A))_{i,j}`, where `A` is an
arbitrary input state matrix.
EXAMPLES
EXAMPLES:
This function allows us to determine the polynomial representations
of entries across multiple round functions. For example, if we
Expand Down
4 changes: 1 addition & 3 deletions src/sage/geometry/hyperbolic_space/hyperbolic_geodesic.py
Original file line number Diff line number Diff line change
Expand Up @@ -140,13 +140,11 @@ def __init__(self, model, start, end, **graphics_options):
r"""
See :class:`HyperbolicGeodesic` for full documentation.
EXAMPLES ::
EXAMPLES::
sage: HyperbolicPlane().UHP().get_geodesic(I, 2 + I)
Geodesic in UHP from I to I + 2
"""

self._model = model
self._start = start
self._end = end
Expand Down
2 changes: 1 addition & 1 deletion src/sage/groups/braid.py
Original file line number Diff line number Diff line change
Expand Up @@ -2077,7 +2077,7 @@ def mapping_class_action(self, F):
A :class:`MappingClassGroupAction`.
EXAMPLES ::
EXAMPLES::
sage: B = BraidGroup(3)
sage: B.inject_variables()
Expand Down
6 changes: 4 additions & 2 deletions src/sage/interfaces/maxima_abstract.py
Original file line number Diff line number Diff line change
Expand Up @@ -670,9 +670,11 @@ def function(self, args, defn, rep=None, latex=None):
## represented in 2-d.

## INPUT:
## flag -- bool (default: True)

## EXAMPLES
## flag -- bool (default: True)

## EXAMPLES::

## sage: maxima('1/2')
## 1/2
## sage: maxima.display2d(True)
Expand Down
6 changes: 3 additions & 3 deletions src/sage/modular/multiple_zeta.py
Original file line number Diff line number Diff line change
Expand Up @@ -968,7 +968,7 @@ def _element_constructor_(self, x):
r"""
Convert ``x`` into ``self``.
INPUT
INPUT:
- ``x`` -- either a list, tuple, word or a multiple zeta value
Expand Down Expand Up @@ -1884,7 +1884,7 @@ def _element_constructor_(self, x):
r"""
Convert ``x`` into ``self``.
INPUT
INPUT:
- ``x`` -- either a list, tuple, word or a multiple zeta value
Expand Down Expand Up @@ -2151,7 +2151,7 @@ def _element_constructor_(self, x):
r"""
Convert ``x`` into ``self``.
INPUT
INPUT:
- ``x`` -- either a list, tuple, word
Expand Down
2 changes: 1 addition & 1 deletion src/sage/rings/padics/padic_generic_element.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -4055,7 +4055,7 @@ cdef class pAdicGenericElement(LocalGenericElement):
- `Li_n(`self`)`
EXAMPLES ::
EXAMPLES::
sage: Qp(2)(-1)._polylog_res_1(6) == 0
True
Expand Down
2 changes: 1 addition & 1 deletion src/sage/schemes/elliptic_curves/gal_reps.py
Original file line number Diff line number Diff line change
Expand Up @@ -728,7 +728,7 @@ def image_type(self, p):
- a string.
EXAMPLES ::
EXAMPLES::
sage: E = EllipticCurve('14a1')
sage: rho = E.galois_representation()
Expand Down
Loading

0 comments on commit 25ff4f4

Please sign in to comment.