Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Work on CircuitsMatroid #37930

Merged
merged 4 commits into from
May 25, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion src/sage/algebras/orlik_solomon.py
Original file line number Diff line number Diff line change
Expand Up @@ -132,7 +132,7 @@ def __init__(self, R, M, ordering=None):
self._broken_circuits[frozenset(L[1:])] = L[0]

cat = Algebras(R).FiniteDimensional().WithBasis().Graded()
CombinatorialFreeModule.__init__(self, R, M.no_broken_circuits_sets(ordering),
CombinatorialFreeModule.__init__(self, R, list(M.no_broken_circuits_sets(ordering)),
prefix='OS', bracket='{',
sorting_key=self._sort_key,
category=cat)
Expand Down
14 changes: 7 additions & 7 deletions src/sage/algebras/orlik_terao.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@ class OrlikTeraoAlgebra(CombinatorialFreeModule):
r"""
An Orlik-Terao algebra.
Let `R` be a commutative ring. Let `M` be a matroid with ground set
Let `R` be a commutative ring. Let `M` be a matroid with groundset
`X` with some fixed ordering and representation `A = (a_x)_{x \in X}`
(so `a_x` is a (column) vector). Let `C(M)` denote the set of circuits
of `M`. Let `P` denote the quotient algebra `R[e_x \mid x \in X] /
Expand Down Expand Up @@ -65,7 +65,7 @@ class OrlikTeraoAlgebra(CombinatorialFreeModule):
- ``R`` -- the base ring
- ``M`` -- the defining matroid
- ``ordering`` -- (optional) an ordering of the ground set
- ``ordering`` -- (optional) an ordering of the groundset
EXAMPLES:
Expand Down Expand Up @@ -164,7 +164,7 @@ def __init__(self, R, M, ordering=None):
self._broken_circuits[frozenset(L[1:])] = L[0]

cat = Algebras(R).FiniteDimensional().Commutative().WithBasis().Graded()
CombinatorialFreeModule.__init__(self, R, M.no_broken_circuits_sets(ordering),
CombinatorialFreeModule.__init__(self, R, list(M.no_broken_circuits_sets(ordering)),
prefix='OT', bracket='{',
sorting_key=self._sort_key,
category=cat)
Expand Down Expand Up @@ -252,7 +252,7 @@ def algebra_generators(self):
r"""
Return the algebra generators of ``self``.
These form a family indexed by the ground set `X` of `M`. For
These form a family indexed by the groundset `X` of `M`. For
each `x \in X`, the `x`-th element is `e_x`.
EXAMPLES::
Expand Down Expand Up @@ -323,7 +323,7 @@ def product_on_basis(self, a, b):
TESTS:
Let us check that `e_{s_1} e_{s_2} \cdots e_{s_k} = e_S` for any
subset `S = \{ s_1 < s_2 < \cdots < s_k \}` of the ground set::
subset `S = \{ s_1 < s_2 < \cdots < s_k \}` of the groundset::
sage: # needs sage.graphs
sage: G = Graph([[1,2],[1,2],[2,3],[3,4],[4,2]], multiedges=True)
Expand Down Expand Up @@ -355,11 +355,11 @@ def product_on_basis(self, a, b):
def subset_image(self, S):
r"""
Return the element `e_S` of ``self`` corresponding to a
subset ``S`` of the ground set of the defining matroid.
subset ``S`` of the groundset of the defining matroid.
INPUT:
- ``S`` -- a frozenset which is a subset of the ground set of `M`
- ``S`` -- a frozenset which is a subset of the groundset of `M`
EXAMPLES::
Expand Down
21 changes: 14 additions & 7 deletions src/sage/matroids/circuits_matroid.pxd
Original file line number Diff line number Diff line change
Expand Up @@ -2,23 +2,30 @@ from sage.matroids.matroid cimport Matroid
from sage.matroids.set_system cimport SetSystem

cdef class CircuitsMatroid(Matroid):
cdef frozenset _groundset # _E
cdef int _matroid_rank # _R
cdef SetSystem _C # circuits
cdef frozenset _groundset
cdef int _matroid_rank
cdef set _C # circuits
cdef dict _k_C # k-circuits (k=len)
cdef list _sorted_C_lens
cdef bint _nsc_defined
cpdef groundset(self)
cpdef _rank(self, X)
cpdef full_rank(self)
cpdef _is_independent(self, F)
cpdef _max_independent(self, F)
cpdef _circuit(self, F)
cpdef _is_independent(self, X)
cpdef _max_independent(self, X)
cpdef _circuit(self, X)
cpdef _closure(self, X)

# enumeration
cpdef bases(self)
cpdef nonbases(self)
cpdef independent_r_sets(self, long r)
cpdef dependent_r_sets(self, long r)
cpdef circuits(self, k=*)
cpdef nonspanning_circuits(self)
cpdef no_broken_circuits_sets(self, ordering=*)
cpdef no_broken_circuits_facets(self, ordering=*, reduced=*)
cpdef no_broken_circuits_sets(self, ordering=*, reduced=*)
cpdef broken_circuit_complex(self, ordering=*, reduced=*)

# properties
cpdef girth(self)
Expand Down
Loading
Loading