Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

sage.graphs: More # optional and other modularization fixes #35647

Merged
merged 1 commit into from
May 28, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion src/sage/graphs/base/c_graph.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -4548,7 +4548,7 @@ cdef class CGraphBackend(GenericGraphBackend):
At first, the following graph is acyclic::

sage: D = DiGraph({ 0:[1,2,3], 4:[2,5], 1:[8], 2:[7], 3:[7], 5:[6,7], 7:[8], 6:[9], 8:[10], 9:[10] })
sage: D.plot(layout='circular').show()
sage: D.plot(layout='circular').show() # optional - sage.plot
sage: D.is_directed_acyclic()
True

Expand Down
14 changes: 7 additions & 7 deletions src/sage/graphs/bipartite_graph.py
Original file line number Diff line number Diff line change
Expand Up @@ -158,7 +158,7 @@ class BipartiteGraph(Graph):
sage: B = BipartiteGraph(P, partition, check=False)
sage: B.left
{0, 1, 2, 3, 4}
sage: B.show()
sage: B.show() # optional - sage.plot

::

Expand Down Expand Up @@ -304,14 +304,14 @@ class BipartiteGraph(Graph):
sage: B = BipartiteGraph('F?^T_\n', partition=[[0, 1, 2], [3, 4, 5, 6]], check=False)
sage: B.left
{0, 1, 2}
sage: B.show()
sage: B.show() # optional - sage.plot

#. From a NetworkX bipartite graph::

sage: import networkx # optional - networkx
sage: G = graphs.OctahedralGraph() # optional - networkx
sage: N = networkx.make_clique_bipartite(G.networkx_graph()) # optional - networkx
sage: B = BipartiteGraph(N) # optional - networkx
sage: import networkx # optional - networkx
sage: G = graphs.OctahedralGraph() # optional - networkx
sage: N = networkx.make_clique_bipartite(G.networkx_graph()) # optional - networkx
sage: B = BipartiteGraph(N) # optional - networkx

TESTS:

Expand Down Expand Up @@ -1464,7 +1464,7 @@ def plot(self, *args, **kwds):
EXAMPLES::

sage: B = BipartiteGraph(graphs.CycleGraph(20))
sage: B.plot()
sage: B.plot() # optional - sage.plot
Graphics object consisting of 41 graphics primitives
"""
if "pos" not in kwds:
Expand Down
4 changes: 2 additions & 2 deletions src/sage/graphs/cliquer.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -115,7 +115,7 @@ def all_max_clique(graph):
[2, 6], [2, 8], [3, 4], [3, 7], [3, 9], [4, 5], [4, 8], [5, 10],
[5, 11], [6, 10], [6, 11], [7, 8], [7, 11], [8, 10], [9, 10], [9, 11]]
sage: G = Graph({0:[1,2,3], 1:[2], 3:[0,1]})
sage: G.show(figsize=[2,2])
sage: G.show(figsize=[2,2]) # optional - sage.plot
sage: G.cliques_maximum()
[[0, 1, 2], [0, 1, 3]]
sage: C = graphs.PetersenGraph()
Expand Down Expand Up @@ -302,7 +302,7 @@ def clique_number(graph):
sage: C.clique_number()
4
sage: G = Graph({0:[1,2,3], 1:[2], 3:[0,1]})
sage: G.show(figsize=[2,2])
sage: G.show(figsize=[2,2]) # optional - sage.plot
sage: G.clique_number()
3

Expand Down
2 changes: 1 addition & 1 deletion src/sage/graphs/comparability.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -642,7 +642,7 @@ def is_permutation(g, algorithm="greedy", certificate=False, check=True,
sage: p1 = Permutation([nn+1 for nn in perm[0]])
sage: p2 = Permutation([nn+1 for nn in perm[1]])
sage: p = p2 * p1.inverse()
sage: p.show(representation = "braid")
sage: p.show(representation="braid") # optional - sage.plot

TESTS:

Expand Down
6 changes: 3 additions & 3 deletions src/sage/graphs/connectivity.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -215,12 +215,12 @@ def connected_components_subgraphs(G):
sage: from sage.graphs.connectivity import connected_components_subgraphs
sage: G = Graph({0: [1, 3], 1: [2], 2: [3], 4: [5, 6], 5: [6]})
sage: L = connected_components_subgraphs(G)
sage: graphs_list.show_graphs(L)
sage: graphs_list.show_graphs(L) # optional - sage.plot
sage: D = DiGraph({0: [1, 3], 1: [2], 2: [3], 4: [5, 6], 5: [6]})
sage: L = connected_components_subgraphs(D)
sage: graphs_list.show_graphs(L)
sage: graphs_list.show_graphs(L) # optional - sage.plot
sage: L = D.connected_components_subgraphs()
sage: graphs_list.show_graphs(L)
sage: graphs_list.show_graphs(L) # optional - sage.plot

TESTS:

Expand Down
6 changes: 3 additions & 3 deletions src/sage/graphs/digraph.py
Original file line number Diff line number Diff line change
Expand Up @@ -951,7 +951,7 @@ def is_directed_acyclic(self, certificate=False):
At first, the following graph is acyclic::

sage: D = DiGraph({0:[1, 2, 3], 4:[2, 5], 1:[8], 2:[7], 3:[7], 5:[6,7], 7:[8], 6:[9], 8:[10], 9:[10]})
sage: D.plot(layout='circular').show()
sage: D.plot(layout='circular').show() # optional - sage.plot
sage: D.is_directed_acyclic()
True

Expand Down Expand Up @@ -3140,7 +3140,7 @@ def topological_sort(self, implementation="default"):

sage: D = DiGraph({0: [1, 2, 3], 4: [2, 5], 1: [8], 2: [7], 3: [7],
....: 5: [6, 7], 7: [8], 6: [9], 8: [10], 9: [10]})
sage: D.plot(layout='circular').show()
sage: D.plot(layout='circular').show() # optional - sage.plot
sage: D.topological_sort()
[4, 5, 6, 9, 0, 1, 2, 3, 7, 8, 10]

Expand Down Expand Up @@ -3220,7 +3220,7 @@ def topological_sort_generator(self):
EXAMPLES::

sage: D = DiGraph({0: [1, 2], 1: [3], 2: [3, 4]})
sage: D.plot(layout='circular').show()
sage: D.plot(layout='circular').show() # optional - sage.plot
sage: list(D.topological_sort_generator())
[[0, 1, 2, 3, 4], [0, 2, 1, 3, 4], [0, 2, 1, 4, 3], [0, 2, 4, 1, 3], [0, 1, 2, 4, 3]]

Expand Down
Loading