Skip to content

Commit

Permalink
Trac #33748: make accessing coefficients of finite-field elements easier
Browse files Browse the repository at this point in the history
This comes up rather frequently:
{{{#!sage
sage: F.<i> = GF(431^2, modulus=x^2+1)
sage: a = F.random_element()  # some computation
sage: coeffs = a.polynomial().padded_list(2)  # cumbersome!
}}}

For number fields, we do have a shorthand:
{{{#!sage
sage: K.<i> = NumberField(x^2+1)
sage: b = K.random_element()  # some computation
sage: coeffs = b.list()
}}}

This patch adds a `.__getitem__()` method to the class
`FinitePolyExtElement`, which makes `a[i]` and `list(a)` and `tuple(a)`
work as expected.

For compatibility with number-field elements, we also add `.list()`,
which should behave identically to calling `list()` on the element.

URL: https://trac.sagemath.org/33748
Reported by: lorenz
Ticket author(s): Lorenz Panny
Reviewer(s): Travis Scrimshaw
  • Loading branch information
Release Manager committed May 22, 2022
2 parents f02236f + 121d0ab commit 9597eaf
Showing 1 changed file with 131 additions and 2 deletions.
133 changes: 131 additions & 2 deletions src/sage/rings/finite_rings/element_base.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -211,10 +211,139 @@ cdef class FinitePolyExtElement(FiniteRingElement):
"""
return self.minpoly(var)

def __getitem__(self, n):
r"""
Return the `n`\th coefficient of this finite-field element when
written as a polynomial in the generator.
EXAMPLES::
sage: x = polygen(GF(19))
sage: F.<i> = GF(19^2, modulus=x^2+1)
sage: a = 5 + 7*i
sage: a[0]
5
sage: a[1]
7
::
sage: b = F(11)
sage: b[0]
11
sage: b[1]
0
TESTS::
sage: F,t = GF(random_prime(99)^randrange(2,99), 't').objgen()
sage: a = F.random_element()
sage: all(a[i] == a.polynomial()[i] for i in range(F.degree()))
True
sage: a == sum(a[i]*t^i for i in range(F.degree()))
True
"""
if n < 0 or n >= self.parent().degree():
raise IndexError("index must lie between 0 and the degree minus 1")
return self.polynomial()[n]

def list(self):
r"""
Return the list of coefficients (in little-endian) of this
finite-field element when written as a polynomial in the
generator.
Equivalent to calling ``list()`` on this element.
EXAMPLES::
sage: x = polygen(GF(71))
sage: F.<u> = GF(71^7, modulus=x^7+x+1)
sage: a = 3 + u + 3*u^2 + 3*u^3 + 7*u^4
sage: a.list()
[3, 1, 3, 3, 7, 0, 0]
sage: a.list() == list(a) == [a[i] for i in range(F.degree())]
True
The coefficients returned are those of a fully reduced
representative of the finite-field element::
sage: b = u^777
sage: b.list()
[9, 69, 4, 27, 40, 10, 56]
sage: (u.polynomial()^777).list()
[0, 0, 0, 0, ..., 0, 1]
TESTS::
sage: R.<x> = GF(17)[]
sage: F.<t> = GF(17^60)
sage: a = F.random_element()
sage: a == R(a.list())(t)
True
sage: list(a) == a.list()
True
"""
return self.polynomial().padded_list(self.parent().degree())

def __iter__(self):
r"""
Return an iterator over the coefficients of this finite-field
element, in the same order as :meth:`list`.
EXAMPLES::
sage: x = polygen(GF(19))
sage: F.<i> = GF(19^2, modulus=x^2+1)
sage: a = 5 + 7*i
sage: it = iter(a)
sage: next(it)
5
sage: next(it)
7
sage: next(it)
Traceback (most recent call last):
...
StopIteration
sage: list(a) # implicit doctest
[5, 7]
sage: tuple(a) # implicit doctest
(5, 7)
sage: b = F(11)
sage: list(b) # implicit doctest
[11, 0]
sage: tuple(b) # implicit doctest
(11, 0)
sage: list(b.polynomial())
[11]
TESTS::
sage: F = GF(random_prime(333)^randrange(111,999),'t')
sage: a = F.random_element()
sage: list(a) == a.list() # implicit doctest
True
::
sage: F.<t> = GF(17^60)
sage: a = F.random_element()
sage: a == sum(c*t^i for i,c in enumerate(a)) # implicit doctest
True
::
sage: F.<t> = GF((2^127-1)^10, 't')
sage: a = F.random_element()
sage: a == sum(c*t^i for i,c in enumerate(a)) # implicit doctest
True
"""
return iter(self.list())

def _vector_(self, reverse=False):
"""
Return a vector matching this element in the vector space attached
to the parent. The most significant bit is to the right.
to the parent. The most significant coefficient is to the right.
INPUT:
Expand Down Expand Up @@ -250,7 +379,7 @@ cdef class FinitePolyExtElement(FiniteRingElement):

k = self.parent()
p = self.polynomial()
ret = p.list() + [0] * (k.degree() - p.degree() - 1)
ret = self.polynomial().padded_list(k.degree())

if reverse:
ret.reverse()
Expand Down

0 comments on commit 9597eaf

Please sign in to comment.