Skip to content

Commit

Permalink
./sage -fixdoctests --distribution 'sagemath-modules[pari]' --only-ta…
Browse files Browse the repository at this point in the history
…gs --probe all src/sage/rings/function_field/
  • Loading branch information
Matthias Koeppe committed Jul 17, 2023
1 parent 2f27e8c commit 61654eb
Show file tree
Hide file tree
Showing 7 changed files with 159 additions and 163 deletions.
6 changes: 3 additions & 3 deletions src/sage/rings/function_field/differential.py
Original file line number Diff line number Diff line change
Expand Up @@ -151,7 +151,7 @@ def _latex_(self):
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^3 + x + x^3*Y)
sage: L.<y> = K.extension(Y^3 + x + x^3*Y) # needs sage.rings.function_field
sage: w = y.differential()
sage: latex(w)
\left( x y^{2} + \frac{1}{x} y \right)\, dx
Expand Down Expand Up @@ -444,7 +444,7 @@ def residue(self, place):
sage: w = 1/f * f.differential()
sage: d = f.divisor()
sage: s = d.support()
sage: sum([w.residue(p).trace() for p in s])
sage: sum([w.residue(p).trace() for p in s]) # needs sage.rings.function_field
0
and in an extension field::
Expand Down Expand Up @@ -559,7 +559,7 @@ def cartier(self):
sage: F.<x> = FunctionField(GF(4))
sage: f = x/(x^2 + x + 1)
sage: w = 1/f*f.differential()
sage: w.cartier() == w
sage: w.cartier() == w # needs sage.rings.function_field
True
"""
W = self.parent()
Expand Down
2 changes: 1 addition & 1 deletion src/sage/rings/function_field/element.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -569,7 +569,7 @@ cdef class FunctionFieldElement(FieldElement):
::
sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[] # needs sage.rings.finite_rings
sage: L.<y> = K.extension(Y^2 + Y + x + 1/x) # needs sage.rings.finite_rings
sage: L.<y> = K.extension(Y^2 + Y + x + 1/x) # needs sage.rings.finite_rings sage.rings.function_field
sage: (x/y).zeros() # needs sage.modules sage.rings.finite_rings sage.rings.function_field
[Place (x, x*y)]
"""
Expand Down
2 changes: 1 addition & 1 deletion src/sage/rings/function_field/function_field.py
Original file line number Diff line number Diff line change
Expand Up @@ -129,7 +129,7 @@
sage: TestSuite(L).run(max_runs=8) # long time (25s) # needs sage.rings.function_field sage.rings.number_field
sage: TestSuite(M).run(max_runs=8) # long time (35s) # needs sage.rings.finite_rings sage.rings.function_field
sage: TestSuite(N).run(max_runs=8, skip='_test_derivation') # long time (15s), needs sage.rings.finite_rings
sage: TestSuite(O).run() # needs sage.rings.function_field
sage: TestSuite(O).run()
sage: TestSuite(R).run() # needs sage.rings.finite_rings sage.rings.function_field
sage: TestSuite(S).run() # long time (4s) # needs sage.rings.finite_rings sage.rings.function_field
Expand Down
32 changes: 16 additions & 16 deletions src/sage/rings/function_field/order.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,35 +30,35 @@
`O` and one maximal infinite order `O_\infty`. There are other non-maximal
orders such as equation orders::
sage: # needs sage.rings.finite_rings
sage: # needs sage.rings.function_field
sage: K.<x> = FunctionField(GF(3)); R.<y> = K[]
sage: L.<y> = K.extension(y^3 - y - x) # needs sage.rings.function_field
sage: O = L.equation_order() # needs sage.rings.function_field
sage: 1/y in O # needs sage.rings.function_field
sage: L.<y> = K.extension(y^3 - y - x)
sage: O = L.equation_order()
sage: 1/y in O
False
sage: x/y in O # needs sage.rings.function_field
sage: x/y in O
True
Sage provides an extensive functionality for computations in maximal orders of
function fields. For example, you can decompose a prime ideal of a rational
function field in an extension::
sage: # needs sage.rings.finite_rings
sage: K.<x> = FunctionField(GF(2)); _.<t> = K[]
sage: o = K.maximal_order()
sage: p = o.ideal(x + 1)
sage: p.is_prime()
sage: p.is_prime() # needs sage.libs.pari
True
sage: F.<y> = K.extension(t^3 - x^2*(x^2 + x + 1)^2) # needs sage.rings.finite_rings sage.rings.function_field
sage: O = F.maximal_order() # needs sage.rings.finite_rings sage.rings.function_field
sage: O.decomposition(p) # needs sage.rings.finite_rings sage.rings.function_field
sage: # needs sage.rings.function_field
sage: F.<y> = K.extension(t^3 - x^2*(x^2 + x + 1)^2)
sage: O = F.maximal_order()
sage: O.decomposition(p)
[(Ideal (x + 1, y + 1) of Maximal order
of Function field in y defined by y^3 + x^6 + x^4 + x^2, 1, 1),
(Ideal (x + 1, (1/(x^3 + x^2 + x))*y^2 + y + 1) of Maximal order
of Function field in y defined by y^3 + x^6 + x^4 + x^2, 2, 1)]
sage: # needs sage.rings.finite_rings sage.rings.function_field
sage: # needs sage.rings.function_field
sage: p1, relative_degree,ramification_index = O.decomposition(p)[1]
sage: p1.parent()
Monoid of ideals of Maximal order of Function field in y
Expand All @@ -71,12 +71,12 @@
When the base constant field is the algebraic field `\QQbar`, the only prime ideals
of the maximal order of the rational function field are linear polynomials. ::
sage: # needs sage.rings.number_field
sage: # needs sage.rings.function_field sage.rings.number_field
sage: K.<x> = FunctionField(QQbar)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - (x^3-x^2)) # needs sage.rings.function_field
sage: L.<y> = K.extension(y^2 - (x^3-x^2))
sage: p = K.maximal_order().ideal(x)
sage: L.maximal_order().decomposition(p) # needs sage.rings.function_field
sage: L.maximal_order().decomposition(p)
[(Ideal (1/x*y - I) of Maximal order of Function field in y defined by y^2 - x^3 + x^2,
1,
1),
Expand Down Expand Up @@ -274,8 +274,8 @@ def _repr_(self):
Maximal infinite order of Rational function field in y over Rational Field
sage: K.<x> = FunctionField(GF(2)); R.<t> = PolynomialRing(K)
sage: F.<y> = K.extension(t^3 - x^2*(x^2+x+1)^2) # needs sage.rings.finite_rings sage.rings.function_field
sage: F.maximal_order_infinite() # needs sage.modules sage.rings.finite_rings sage.rings.function_field
sage: F.<y> = K.extension(t^3 - x^2*(x^2+x+1)^2) # needs sage.rings.function_field
sage: F.maximal_order_infinite() # needs sage.modules sage.rings.function_field
Maximal infinite order of Function field in y defined by y^3 + x^6 + x^4 + x^2
"""
return "Maximal infinite order of %s"%(self.function_field(),)
Loading

0 comments on commit 61654eb

Please sign in to comment.