Skip to content

Commit

Permalink
gh-38881: using Parent in ring extensions
Browse files Browse the repository at this point in the history
    
as another step towards using `Parent` everywhere

### 📝 Checklist

- [x] The title is concise and informative.
- [x] The description explains in detail what this PR is about.
- [ ] I have linked a relevant issue or discussion.
- [x] I have created tests covering the changes.
- [ ] I have updated the documentation and checked the documentation
preview.

Dependencies:

#38821
    
URL: #38881
Reported by: Frédéric Chapoton
Reviewer(s): Martin Rubey
  • Loading branch information
Release Manager committed Nov 2, 2024
2 parents c5d6786 + 440ffdb commit 58e477d
Show file tree
Hide file tree
Showing 10 changed files with 136 additions and 118 deletions.
2 changes: 0 additions & 2 deletions src/doc/en/thematic_tutorials/coercion_and_categories.rst
Original file line number Diff line number Diff line change
Expand Up @@ -133,8 +133,6 @@ This base class provides a lot more methods than a general parent::
'is_commutative',
'is_field',
'is_integrally_closed',
'is_prime_field',
'is_subring',
'krull_dimension',
'localization',
'ngens',
Expand Down
72 changes: 72 additions & 0 deletions src/sage/categories/rings.py
Original file line number Diff line number Diff line change
Expand Up @@ -436,6 +436,30 @@ def is_noetherian(self):
"""
return False

def is_prime_field(self):
r"""
Return ``True`` if this ring is one of the prime fields `\QQ` or
`\GF{p}`.
EXAMPLES::
sage: QQ.is_prime_field()
True
sage: GF(3).is_prime_field()
True
sage: GF(9, 'a').is_prime_field() # needs sage.rings.finite_rings
False
sage: ZZ.is_prime_field()
False
sage: QQ['x'].is_prime_field()
False
sage: Qp(19).is_prime_field() # needs sage.rings.padics
False
"""
# the case of QQ is handled by QQ itself
from sage.categories.finite_fields import FiniteFields
return self in FiniteFields() and self.degree() == 1

def is_zero(self) -> bool:
"""
Return ``True`` if this is the zero ring.
Expand All @@ -459,6 +483,54 @@ def is_zero(self) -> bool:
"""
return self.one() == self.zero()

def is_subring(self, other):
"""
Return ``True`` if the canonical map from ``self`` to ``other`` is
injective.
This raises a :exc:`NotImplementedError` if not known.
EXAMPLES::
sage: ZZ.is_subring(QQ)
True
sage: ZZ.is_subring(GF(19))
False
TESTS::
sage: QQ.is_subring(QQ['x'])
True
sage: QQ.is_subring(GF(7))
False
sage: QQ.is_subring(CyclotomicField(7)) # needs sage.rings.number_field
True
sage: QQ.is_subring(ZZ)
False
Every ring is a subring of itself, :issue:`17287`::
sage: QQbar.is_subring(QQbar) # needs sage.rings.number_field
True
sage: RR.is_subring(RR)
True
sage: CC.is_subring(CC) # needs sage.rings.real_mpfr
True
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^3 - x + 1/10) # needs sage.rings.number_field
sage: K.is_subring(K) # needs sage.rings.number_field
True
sage: R.<x> = RR[]
sage: R.is_subring(R)
True
"""
if self is other:
return True
try:
return self.Hom(other).natural_map().is_injective()
except (TypeError, AttributeError):
return False

def bracket(self, x, y):
"""
Return the Lie bracket `[x, y] = x y - y x` of `x` and `y`.
Expand Down
4 changes: 3 additions & 1 deletion src/sage/rings/morphism.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -2879,8 +2879,10 @@ cdef class FrobeniusEndomorphism_generic(RingHomomorphism):
over Finite Field of size 5
"""
from sage.rings.ring import CommutativeRing
from sage.categories.commutative_rings import CommutativeRings
from sage.categories.homset import Hom
if not isinstance(domain, CommutativeRing):
if not (domain in CommutativeRings() or
isinstance(domain, CommutativeRing)): # TODO: remove this line
raise TypeError("The base ring must be a commutative ring")
self._p = domain.characteristic()
if not self._p.is_prime():
Expand Down
25 changes: 20 additions & 5 deletions src/sage/rings/number_field/order.py
Original file line number Diff line number Diff line change
Expand Up @@ -77,8 +77,9 @@
# https://www.gnu.org/licenses/
# ****************************************************************************

from sage.categories.integral_domains import IntegralDomains
from sage.misc.cachefunc import cached_method
from sage.rings.ring import IntegralDomain
from sage.structure.parent import Parent
from sage.structure.sequence import Sequence
from sage.rings.integer_ring import ZZ
import sage.rings.abc
Expand Down Expand Up @@ -426,7 +427,7 @@ def EquationOrder(f, names, **kwds):
return K.order(K.gens())


class Order(IntegralDomain, sage.rings.abc.Order):
class Order(Parent, sage.rings.abc.Order):
r"""
An order in a number field.
Expand Down Expand Up @@ -478,8 +479,8 @@ def __init__(self, K):
0.0535229072603327 + 1.20934552493846*I
"""
self._K = K
IntegralDomain.__init__(self, ZZ, names=K.variable_names(),
normalize=False)
Parent.__init__(self, base=ZZ, names=K.variable_names(),
normalize=False, category=IntegralDomains())
self._populate_coercion_lists_(embedding=self.number_field())
if self.absolute_degree() == 2:
self.is_maximal() # cache
Expand Down Expand Up @@ -665,7 +666,7 @@ def krull_dimension(self):
sage: O2.krull_dimension()
1
"""
return ZZ(1)
return ZZ.one()

def integral_closure(self):
r"""
Expand Down Expand Up @@ -733,6 +734,20 @@ def ngens(self):
"""
return self.absolute_degree()

def gens(self) -> tuple:
"""
Return the generators as a tuple.
EXAMPLES::
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^3 + x^2 - 2*x + 8)
sage: O = K.maximal_order()
sage: O.gens()
(1, 1/2*a^2 + 1/2*a, a^2)
"""
return tuple(self.gen(i) for i in range(self.absolute_degree()))

def basis(self): # this must be defined in derived class
r"""
Return a basis over `\ZZ` of this order.
Expand Down
70 changes: 0 additions & 70 deletions src/sage/rings/ring.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -543,76 +543,6 @@ cdef class Ring(ParentWithGens):
"""
return True

def is_subring(self, other):
"""
Return ``True`` if the canonical map from ``self`` to ``other`` is
injective.
Raises a :exc:`NotImplementedError` if not known.
EXAMPLES::
sage: ZZ.is_subring(QQ)
True
sage: ZZ.is_subring(GF(19))
False
TESTS::
sage: QQ.is_subring(QQ['x'])
True
sage: QQ.is_subring(GF(7))
False
sage: QQ.is_subring(CyclotomicField(7)) # needs sage.rings.number_field
True
sage: QQ.is_subring(ZZ)
False
Every ring is a subring of itself, :issue:`17287`::
sage: QQbar.is_subring(QQbar) # needs sage.rings.number_field
True
sage: RR.is_subring(RR)
True
sage: CC.is_subring(CC) # needs sage.rings.real_mpfr
True
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^3 - x + 1/10) # needs sage.rings.number_field
sage: K.is_subring(K) # needs sage.rings.number_field
True
sage: R.<x> = RR[]
sage: R.is_subring(R)
True
"""
if self is other:
return True
try:
return self.Hom(other).natural_map().is_injective()
except (TypeError, AttributeError):
return False

def is_prime_field(self):
r"""
Return ``True`` if this ring is one of the prime fields `\QQ` or
`\GF{p}`.
EXAMPLES::
sage: QQ.is_prime_field()
True
sage: GF(3).is_prime_field()
True
sage: GF(9, 'a').is_prime_field() # needs sage.rings.finite_rings
False
sage: ZZ.is_prime_field()
False
sage: QQ['x'].is_prime_field()
False
sage: Qp(19).is_prime_field() # needs sage.rings.padics
False
"""
return False

def order(self):
"""
The number of elements of ``self``.
Expand Down
17 changes: 9 additions & 8 deletions src/sage/rings/ring_extension.pxd
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
from sage.categories.map cimport Map
from sage.rings.ring cimport CommutativeRing
from sage.structure.parent cimport Parent


cdef class RingExtension_generic(CommutativeRing):
cdef class RingExtension_generic(Parent):
cdef _type
cdef _backend
cdef _defining_morphism
Expand All @@ -15,10 +15,10 @@ cdef class RingExtension_generic(CommutativeRing):
cdef type _fraction_field_type

cpdef is_defined_over(self, base)
cpdef CommutativeRing _check_base(self, CommutativeRing base)
cpdef _degree_over(self, CommutativeRing base)
cpdef _is_finite_over(self, CommutativeRing base)
cpdef _is_free_over(self, CommutativeRing base)
cpdef Parent _check_base(self, Parent base)
cpdef _degree_over(self, Parent base)
cpdef _is_finite_over(self, Parent base)
cpdef _is_free_over(self, Parent base)
cdef Map _defining_morphism_fraction_field(self, bint extend_base)


Expand All @@ -31,10 +31,11 @@ cdef class RingExtensionWithBasis(RingExtension_generic):
cdef _basis_names
cdef _basis_latex_names

cpdef _basis_over(self, CommutativeRing base)
# cpdef _free_module(self, CommutativeRing base, bint map)
cpdef _basis_over(self, Parent base)
# cpdef _free_module(self, Parent base, bint map)


cdef class RingExtensionWithGen(RingExtensionWithBasis):
cdef _gen
cdef _name
cdef public object _latex_names
Loading

0 comments on commit 58e477d

Please sign in to comment.