-
Notifications
You must be signed in to change notification settings - Fork 1.1k
Integration Tutorial
rUv edited this page Sep 10, 2025
·
5 revisions
- Overview
- Prerequisites
- Quick Start
- Step-by-Step Setup
- Integration Patterns
- Practical Examples
- Performance Optimization
- Troubleshooting
- Advanced Use Cases
This tutorial demonstrates how to integrate three powerful AI orchestration systems:
- Claude Flow: Local AI orchestration with 87 MCP tools and SPARC methodology
- Flow Nexus: Cloud-native platform with E2B sandboxes and distributed computing
- ruv-swarm: WebAssembly-accelerated multi-agent system with neural networks
✅ 3-10x Performance: WASM acceleration for neural computations
✅ Unified Interface: 150+ MCP tools through single protocol
✅ Cost Efficiency: Local development + cloud scaling
✅ Cognitive Intelligence: 5 adaptive thinking patterns
✅ Seamless Deployment: Local → Cloud migration path
# Node.js 18+ and npm
node --version # v18.0.0+
npm --version # 9.0.0+
# Claude CLI (latest)
npm install -g @anthropic-ai/claude-cli@latest
# Git for version control
git --version
- Flow Nexus Account: Register at https://flow-nexus.ruv.io
- GitHub Account: For repository access
- Claude API Access: For Claude Code integration
# Install latest alpha version
npm install -g claude-flow@alpha
# Verify installation
npx claude-flow@alpha --version
# Add all three MCP servers
claude mcp add claude-flow npx claude-flow@alpha mcp start
claude mcp add flow-nexus npx flow-nexus mcp start
claude mcp add ruv-swarm npx ruv-swarm mcp start
# Verify MCP setup
claude mcp list
# Quick integration test
npx claude-flow@alpha sparc run test "Integration verification"
// Login to Flow Nexus cloud platform
mcp__flow-nexus__user_login({
email: "your-email@domain.com",
password: "your-password"
})
// Check your credit balance
mcp__flow-nexus__check_balance()
// Start local WASM-accelerated swarm
mcp__ruv-swarm__swarm_init({
topology: "mesh",
maxAgents: 5,
strategy: "adaptive"
})
// Spawn intelligent agents
mcp__ruv-swarm__agent_spawn({
type: "researcher",
capabilities: ["neural_analysis", "cognitive_patterns"]
})
// Initialize cloud swarm with E2B sandboxes
mcp__flow-nexus__swarm_init({
topology: "mesh",
maxAgents: 10,
strategy: "balanced"
})
// Create development sandbox
mcp__flow-nexus__sandbox_create({
template: "node",
name: "dev-environment",
env_vars: {
"NODE_ENV": "development",
"API_KEY": "your-api-key"
}
})
# Use SPARC methodology for systematic development
npx claude-flow@alpha sparc run dev "Full-stack application"
# Enable coordination hooks
npx claude-flow@alpha hooks session-start --integration-mode
# 1. Design with SPARC
npx claude-flow@alpha sparc run architecture "E-commerce API"
# 2. Prototype with ruv-swarm
mcp__ruv-swarm__task_orchestrate({
task: "Create API endpoints",
strategy: "parallel",
priority: "high"
})
# 3. Test locally
npx claude-flow@alpha sparc run test "API validation"
// Local experimentation
mcp__ruv-swarm__neural_train({
pattern_type: "classification",
training_data: "local_dataset.json",
epochs: 50
})
// Cloud distributed training
mcp__flow-nexus__neural_cluster_init({
name: "production-cluster",
architecture: "transformer",
nodes: 5
})
mcp__flow-nexus__neural_train_distributed({
cluster_id: "production-cluster",
dataset: "large_training_set",
epochs: 100,
federated: true
})
// 1. Local development
mcp__ruv-swarm__swarm_init({topology: "mesh"})
// 2. Cloud staging
mcp__flow-nexus__sandbox_create({
template: "nextjs",
name: "staging-app"
})
// 3. Production deployment
mcp__flow-nexus__workflow_create({
name: "Production Deploy",
steps: [
{action: "test", agent_type: "tester"},
{action: "build", agent_type: "builder"},
{action: "deploy", agent_type: "deployer"}
],
triggers: ["github_push"]
})
# Setup review swarm
npx claude-flow@alpha sparc batch "review,test,optimize" "Code quality check"
# Deploy review agents
mcp__ruv-swarm__agent_spawn({
type: "reviewer",
capabilities: ["code_analysis", "security_scan", "performance_check"]
})
# Cloud validation
mcp__flow-nexus__sandbox_create({
template: "python",
name: "code-review-env"
})
// Neural pattern recognition
mcp__ruv-swarm__neural_patterns({
action: "analyze",
operation: "user_behavior_analysis"
})
// Cloud data processing
mcp__flow-nexus__workflow_create({
name: "Analytics Pipeline",
steps: [
{action: "collect", source: "user_events"},
{action: "process", agent_type: "analyst"},
{action: "visualize", agent_type: "dashboard"}
]
})
// Real-time updates
mcp__flow-nexus__realtime_subscribe({
table: "analytics_data",
event: "*"
})
# Comprehensive testing with all systems
npx claude-flow@alpha sparc run test "Full application suite"
# Parallel test execution
mcp__ruv-swarm__task_orchestrate({
task: "Run unit tests",
strategy: "parallel",
maxAgents: 3
})
# Cloud integration testing
mcp__flow-nexus__sandbox_execute({
sandbox_id: "test-env",
code: "npm run test:integration",
timeout: 300
})
// Optimize ruv-swarm performance
mcp__ruv-swarm__features_detect({component: "neural"})
// Check SIMD support
mcp__ruv-swarm__benchmark_run({
type: "neural",
iterations: 10
})
// Memory optimization
mcp__ruv-swarm__memory_usage({
action: "analyze",
namespace: "performance"
})
// Monitor Flow Nexus usage
mcp__flow-nexus__check_balance()
// Optimize sandbox usage
mcp__flow-nexus__sandbox_list({status: "running"})
// Auto-scaling configuration
mcp__flow-nexus__swarm_scale({
swarm_id: "production",
target_agents: 8
})
# Performance monitoring
npx claude-flow@alpha hooks post-task --analyze-performance true
# Memory management
npx claude-flow@alpha hooks session-restore --optimize-memory
# Batch operations for efficiency
npx claude-flow@alpha sparc batch "code,tdd,devops" "Optimized pipeline"
# Check MCP server status
claude mcp list
# Remove and re-add MCP servers
claude mcp remove claude-flow
claude mcp remove flow-nexus
claude mcp remove ruv-swarm
# Re-add MCP servers
claude mcp add claude-flow npx claude-flow@alpha mcp start
claude mcp add flow-nexus npx flow-nexus mcp start
claude mcp add ruv-swarm npx ruv-swarm mcp start
# Re-authenticate Flow Nexus
mcp__flow-nexus__auth_status()
// Check ruv-swarm features
mcp__ruv-swarm__features_detect()
// Verify WASM support
mcp__ruv-swarm__swarm_status({verbose: true})
// Reload modules if needed
mcp__ruv-swarm__memory_usage({action: "clear"})
// Check sandbox status
mcp__flow-nexus__sandbox_status({sandbox_id: "your-sandbox"})
// View logs
mcp__flow-nexus__sandbox_logs({
sandbox_id: "your-sandbox",
lines: 50
})
// Restart if needed
mcp__flow-nexus__sandbox_stop({sandbox_id: "problematic-sandbox"})
# Analyze performance metrics
npx claude-flow@alpha hooks post-task --analyze-performance
# Optimize agent count
mcp__ruv-swarm__swarm_scale({target_agents: 3})
# Use batch operations
npx claude-flow@alpha sparc pipeline "Optimized workflow"
// Monitor memory
mcp__ruv-swarm__memory_usage({detail: "full"})
// Clear unused resources
mcp__flow-nexus__sandbox_delete({sandbox_id: "unused-sandbox"})
# Optimize WASM modules
mcp__ruv-swarm__benchmark_run({type: "memory"})
# Multi-team coordination
npx claude-flow@alpha sparc batch "architecture,backend,frontend,testing" "Enterprise app"
# Distributed neural training
mcp__flow-nexus__neural_cluster_init({
name: "enterprise-ai",
nodes: 20,
architecture: "transformer"
})
# Production monitoring
mcp__flow-nexus__workflow_create({
name: "Production Monitor",
triggers: ["system_alert", "performance_threshold"]
})
// Experimental neural patterns
mcp__ruv-swarm__neural_patterns({
action: "experiment",
patterns: ["lateral", "divergent", "systems"]
})
// Cloud experimentation environment
mcp__flow-nexus__sandbox_create({
template: "research",
install_packages: ["tensorflow", "pytorch", "numpy"]
})
// Collaborative research
npx claude-flow@alpha hooks team-coordination --research-mode
# Complete CI/CD pipeline
npx claude-flow@alpha sparc pipeline "Automated deployment"
# Infrastructure as Code
mcp__flow-nexus__workflow_create({
name: "Infrastructure Deploy",
steps: [
{action: "validate", agent_type: "validator"},
{action: "provision", agent_type: "provisioner"},
{action: "configure", agent_type: "configurator"},
{action: "monitor", agent_type: "monitor"}
]
})
# Monitoring and alerting
mcp__flow-nexus__realtime_subscribe({
table: "system_metrics",
filter: "severity >= 'warning'"
})
Track your integration success with these KPIs:
- Setup Time: < 10 minutes for full integration
- Agent Spawn Time: < 0.01ms (ruv-swarm benchmark)
- Cloud Deployment: < 2 minutes for E2B sandbox
- Neural Training: 3-10x speedup with WASM
- Memory Usage: < 50MB for full stack
- Cost Efficiency: 60% reduction through smart scaling
- Test Coverage: Automated across all three systems
- Error Rate: < 1% with proper error handling
- Uptime: 99.9% with cloud redundancy
- Explore Advanced Features: Dive deeper into cognitive patterns and neural networks
- Scale Your Applications: Use Flow Nexus for production deployments
- Contribute: Add new integration patterns to the community
- Monitor Performance: Set up comprehensive monitoring and alerting
- Claude Flow Documentation: https://github.com/ruvnet/claude-flow
- Flow Nexus Platform: https://flow-nexus.ruv.io
- ruv-swarm Repository: https://github.com/ruvnet/ruv-swarm
- MCP Protocol Spec: https://modelcontextprotocol.io
- Community Discord: Join our Discord
Tutorial Version: 1.0
Last Updated: September 10, 2025
Compatibility: Claude Flow v2.0.0-alpha.107+