Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Make Ty::boxed_ty return an Option #129969

Merged
merged 1 commit into from
Sep 6, 2024
Merged

Conversation

GrigorenkoPV
Copy link
Contributor

@GrigorenkoPV GrigorenkoPV commented Sep 4, 2024

Looks like a good place to use Rust's type system.


Most of

/// Type utilities
impl<'tcx> Ty<'tcx> {
// It would be nicer if this returned the value instead of a reference,
// like how `Predicate::kind` and `Region::kind` do. (It would result in
// many fewer subsequent dereferences.) But that gives a small but
// noticeable performance hit. See #126069 for details.
#[inline(always)]
pub fn kind(self) -> &'tcx TyKind<'tcx> {
self.0.0
}
// FIXME(compiler-errors): Think about removing this.
#[inline(always)]
pub fn flags(self) -> TypeFlags {
self.0.0.flags
}
#[inline]
pub fn is_unit(self) -> bool {
match self.kind() {
Tuple(tys) => tys.is_empty(),
_ => false,
}
}
#[inline]
pub fn is_never(self) -> bool {
matches!(self.kind(), Never)
}
#[inline]
pub fn is_primitive(self) -> bool {
matches!(self.kind(), Bool | Char | Int(_) | Uint(_) | Float(_))
}
#[inline]
pub fn is_adt(self) -> bool {
matches!(self.kind(), Adt(..))
}
#[inline]
pub fn is_ref(self) -> bool {
matches!(self.kind(), Ref(..))
}
#[inline]
pub fn is_ty_var(self) -> bool {
matches!(self.kind(), Infer(TyVar(_)))
}
#[inline]
pub fn ty_vid(self) -> Option<ty::TyVid> {
match self.kind() {
&Infer(TyVar(vid)) => Some(vid),
_ => None,
}
}
#[inline]
pub fn is_ty_or_numeric_infer(self) -> bool {
matches!(self.kind(), Infer(_))
}
#[inline]
pub fn is_phantom_data(self) -> bool {
if let Adt(def, _) = self.kind() { def.is_phantom_data() } else { false }
}
#[inline]
pub fn is_bool(self) -> bool {
*self.kind() == Bool
}
/// Returns `true` if this type is a `str`.
#[inline]
pub fn is_str(self) -> bool {
*self.kind() == Str
}
#[inline]
pub fn is_param(self, index: u32) -> bool {
match self.kind() {
ty::Param(ref data) => data.index == index,
_ => false,
}
}
#[inline]
pub fn is_slice(self) -> bool {
matches!(self.kind(), Slice(_))
}
#[inline]
pub fn is_array_slice(self) -> bool {
match self.kind() {
Slice(_) => true,
ty::RawPtr(ty, _) | Ref(_, ty, _) => matches!(ty.kind(), Slice(_)),
_ => false,
}
}
#[inline]
pub fn is_array(self) -> bool {
matches!(self.kind(), Array(..))
}
#[inline]
pub fn is_simd(self) -> bool {
match self.kind() {
Adt(def, _) => def.repr().simd(),
_ => false,
}
}
pub fn sequence_element_type(self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
match self.kind() {
Array(ty, _) | Slice(ty) => *ty,
Str => tcx.types.u8,
_ => bug!("`sequence_element_type` called on non-sequence value: {}", self),
}
}
pub fn simd_size_and_type(self, tcx: TyCtxt<'tcx>) -> (u64, Ty<'tcx>) {
match self.kind() {
Adt(def, args) => {
assert!(def.repr().simd(), "`simd_size_and_type` called on non-SIMD type");
let variant = def.non_enum_variant();
let f0_ty = variant.fields[FieldIdx::ZERO].ty(tcx, args);
match f0_ty.kind() {
// If the first field is an array, we assume it is the only field and its
// elements are the SIMD components.
Array(f0_elem_ty, f0_len) => {
// FIXME(repr_simd): https://github.com/rust-lang/rust/pull/78863#discussion_r522784112
// The way we evaluate the `N` in `[T; N]` here only works since we use
// `simd_size_and_type` post-monomorphization. It will probably start to ICE
// if we use it in generic code. See the `simd-array-trait` ui test.
(f0_len.eval_target_usize(tcx, ParamEnv::empty()), *f0_elem_ty)
}
// Otherwise, the fields of this Adt are the SIMD components (and we assume they
// all have the same type).
_ => (variant.fields.len() as u64, f0_ty),
}
}
_ => bug!("`simd_size_and_type` called on invalid type"),
}
}
#[inline]
pub fn is_mutable_ptr(self) -> bool {
matches!(self.kind(), RawPtr(_, hir::Mutability::Mut) | Ref(_, _, hir::Mutability::Mut))
}
/// Get the mutability of the reference or `None` when not a reference
#[inline]
pub fn ref_mutability(self) -> Option<hir::Mutability> {
match self.kind() {
Ref(_, _, mutability) => Some(*mutability),
_ => None,
}
}
#[inline]
pub fn is_unsafe_ptr(self) -> bool {
matches!(self.kind(), RawPtr(_, _))
}
/// Tests if this is any kind of primitive pointer type (reference, raw pointer, fn pointer).
#[inline]
pub fn is_any_ptr(self) -> bool {
self.is_ref() || self.is_unsafe_ptr() || self.is_fn_ptr()
}
#[inline]
pub fn is_box(self) -> bool {
match self.kind() {
Adt(def, _) => def.is_box(),
_ => false,
}
}
/// Tests whether this is a Box definitely using the global allocator.
///
/// If the allocator is still generic, the answer is `false`, but it may
/// later turn out that it does use the global allocator.
#[inline]
pub fn is_box_global(self, tcx: TyCtxt<'tcx>) -> bool {
match self.kind() {
Adt(def, args) if def.is_box() => {
let Some(alloc) = args.get(1) else {
// Single-argument Box is always global. (for "minicore" tests)
return true;
};
alloc.expect_ty().ty_adt_def().is_some_and(|alloc_adt| {
let global_alloc = tcx.require_lang_item(LangItem::GlobalAlloc, None);
alloc_adt.did() == global_alloc
})
}
_ => false,
}
}
/// Panics if called on any type other than `Box<T>`.
pub fn boxed_ty(self) -> Ty<'tcx> {
match self.kind() {
Adt(def, args) if def.is_box() => args.type_at(0),
_ => bug!("`boxed_ty` is called on non-box type {:?}", self),
}
}
/// A scalar type is one that denotes an atomic datum, with no sub-components.
/// (A RawPtr is scalar because it represents a non-managed pointer, so its
/// contents are abstract to rustc.)
#[inline]
pub fn is_scalar(self) -> bool {
matches!(
self.kind(),
Bool | Char
| Int(_)
| Float(_)
| Uint(_)
| FnDef(..)
| FnPtr(..)
| RawPtr(_, _)
| Infer(IntVar(_) | FloatVar(_))
)
}
/// Returns `true` if this type is a floating point type.
#[inline]
pub fn is_floating_point(self) -> bool {
matches!(self.kind(), Float(_) | Infer(FloatVar(_)))
}
#[inline]
pub fn is_trait(self) -> bool {
matches!(self.kind(), Dynamic(_, _, ty::Dyn))
}
#[inline]
pub fn is_dyn_star(self) -> bool {
matches!(self.kind(), Dynamic(_, _, ty::DynStar))
}
#[inline]
pub fn is_enum(self) -> bool {
matches!(self.kind(), Adt(adt_def, _) if adt_def.is_enum())
}
#[inline]
pub fn is_union(self) -> bool {
matches!(self.kind(), Adt(adt_def, _) if adt_def.is_union())
}
#[inline]
pub fn is_closure(self) -> bool {
matches!(self.kind(), Closure(..))
}
#[inline]
pub fn is_coroutine(self) -> bool {
matches!(self.kind(), Coroutine(..))
}
#[inline]
pub fn is_coroutine_closure(self) -> bool {
matches!(self.kind(), CoroutineClosure(..))
}
#[inline]
pub fn is_integral(self) -> bool {
matches!(self.kind(), Infer(IntVar(_)) | Int(_) | Uint(_))
}
#[inline]
pub fn is_fresh_ty(self) -> bool {
matches!(self.kind(), Infer(FreshTy(_)))
}
#[inline]
pub fn is_fresh(self) -> bool {
matches!(self.kind(), Infer(FreshTy(_) | FreshIntTy(_) | FreshFloatTy(_)))
}
#[inline]
pub fn is_char(self) -> bool {
matches!(self.kind(), Char)
}
#[inline]
pub fn is_numeric(self) -> bool {
self.is_integral() || self.is_floating_point()
}
#[inline]
pub fn is_signed(self) -> bool {
matches!(self.kind(), Int(_))
}
#[inline]
pub fn is_ptr_sized_integral(self) -> bool {
matches!(self.kind(), Int(ty::IntTy::Isize) | Uint(ty::UintTy::Usize))
}
#[inline]
pub fn has_concrete_skeleton(self) -> bool {
!matches!(self.kind(), Param(_) | Infer(_) | Error(_))
}
/// Checks whether a type recursively contains another type
///
/// Example: `Option<()>` contains `()`
pub fn contains(self, other: Ty<'tcx>) -> bool {
struct ContainsTyVisitor<'tcx>(Ty<'tcx>);
impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for ContainsTyVisitor<'tcx> {
type Result = ControlFlow<()>;
fn visit_ty(&mut self, t: Ty<'tcx>) -> Self::Result {
if self.0 == t { ControlFlow::Break(()) } else { t.super_visit_with(self) }
}
}
let cf = self.visit_with(&mut ContainsTyVisitor(other));
cf.is_break()
}
/// Checks whether a type recursively contains any closure
///
/// Example: `Option<{closure@file.rs:4:20}>` returns true
pub fn contains_closure(self) -> bool {
struct ContainsClosureVisitor;
impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for ContainsClosureVisitor {
type Result = ControlFlow<()>;
fn visit_ty(&mut self, t: Ty<'tcx>) -> Self::Result {
if let ty::Closure(..) = t.kind() {
ControlFlow::Break(())
} else {
t.super_visit_with(self)
}
}
}
let cf = self.visit_with(&mut ContainsClosureVisitor);
cf.is_break()
}
/// Returns the type and mutability of `*ty`.
///
/// The parameter `explicit` indicates if this is an *explicit* dereference.
/// Some types -- notably unsafe ptrs -- can only be dereferenced explicitly.
pub fn builtin_deref(self, explicit: bool) -> Option<Ty<'tcx>> {
match *self.kind() {
Adt(def, _) if def.is_box() => Some(self.boxed_ty()),
Ref(_, ty, _) => Some(ty),
RawPtr(ty, _) if explicit => Some(ty),
_ => None,
}
}
/// Returns the type of `ty[i]`.
pub fn builtin_index(self) -> Option<Ty<'tcx>> {
match self.kind() {
Array(ty, _) | Slice(ty) => Some(*ty),
_ => None,
}
}
pub fn fn_sig(self, tcx: TyCtxt<'tcx>) -> PolyFnSig<'tcx> {
match self.kind() {
FnDef(def_id, args) => tcx.fn_sig(*def_id).instantiate(tcx, args),
FnPtr(sig_tys, hdr) => sig_tys.with(*hdr),
Error(_) => {
// ignore errors (#54954)
Binder::dummy(ty::FnSig {
inputs_and_output: ty::List::empty(),
c_variadic: false,
safety: hir::Safety::Safe,
abi: abi::Abi::Rust,
})
}
Closure(..) => bug!(
"to get the signature of a closure, use `args.as_closure().sig()` not `fn_sig()`",
),
_ => bug!("Ty::fn_sig() called on non-fn type: {:?}", self),
}
}
#[inline]
pub fn is_fn(self) -> bool {
matches!(self.kind(), FnDef(..) | FnPtr(..))
}
#[inline]
pub fn is_fn_ptr(self) -> bool {
matches!(self.kind(), FnPtr(..))
}
#[inline]
pub fn is_impl_trait(self) -> bool {
matches!(self.kind(), Alias(ty::Opaque, ..))
}
#[inline]
pub fn ty_adt_def(self) -> Option<AdtDef<'tcx>> {
match self.kind() {
Adt(adt, _) => Some(*adt),
_ => None,
}
}
/// Iterates over tuple fields.
/// Panics when called on anything but a tuple.
#[inline]
pub fn tuple_fields(self) -> &'tcx List<Ty<'tcx>> {
match self.kind() {
Tuple(args) => args,
_ => bug!("tuple_fields called on non-tuple: {self:?}"),
}
}
/// If the type contains variants, returns the valid range of variant indices.
//
// FIXME: This requires the optimized MIR in the case of coroutines.
#[inline]
pub fn variant_range(self, tcx: TyCtxt<'tcx>) -> Option<Range<VariantIdx>> {
match self.kind() {
TyKind::Adt(adt, _) => Some(adt.variant_range()),
TyKind::Coroutine(def_id, args) => {
Some(args.as_coroutine().variant_range(*def_id, tcx))
}
_ => None,
}
}
/// If the type contains variants, returns the variant for `variant_index`.
/// Panics if `variant_index` is out of range.
//
// FIXME: This requires the optimized MIR in the case of coroutines.
#[inline]
pub fn discriminant_for_variant(
self,
tcx: TyCtxt<'tcx>,
variant_index: VariantIdx,
) -> Option<Discr<'tcx>> {
match self.kind() {
TyKind::Adt(adt, _) if adt.is_enum() => {
Some(adt.discriminant_for_variant(tcx, variant_index))
}
TyKind::Coroutine(def_id, args) => {
Some(args.as_coroutine().discriminant_for_variant(*def_id, tcx, variant_index))
}
_ => None,
}
}
/// Returns the type of the discriminant of this type.
pub fn discriminant_ty(self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
match self.kind() {
ty::Adt(adt, _) if adt.is_enum() => adt.repr().discr_type().to_ty(tcx),
ty::Coroutine(_, args) => args.as_coroutine().discr_ty(tcx),
ty::Param(_) | ty::Alias(..) | ty::Infer(ty::TyVar(_)) => {
let assoc_items = tcx.associated_item_def_ids(
tcx.require_lang_item(hir::LangItem::DiscriminantKind, None),
);
Ty::new_projection_from_args(tcx, assoc_items[0], tcx.mk_args(&[self.into()]))
}
ty::Pat(ty, _) => ty.discriminant_ty(tcx),
ty::Bool
| ty::Char
| ty::Int(_)
| ty::Uint(_)
| ty::Float(_)
| ty::Adt(..)
| ty::Foreign(_)
| ty::Str
| ty::Array(..)
| ty::Slice(_)
| ty::RawPtr(_, _)
| ty::Ref(..)
| ty::FnDef(..)
| ty::FnPtr(..)
| ty::Dynamic(..)
| ty::Closure(..)
| ty::CoroutineClosure(..)
| ty::CoroutineWitness(..)
| ty::Never
| ty::Tuple(_)
| ty::Error(_)
| ty::Infer(IntVar(_) | FloatVar(_)) => tcx.types.u8,
ty::Bound(..)
| ty::Placeholder(_)
| ty::Infer(FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
bug!("`discriminant_ty` applied to unexpected type: {:?}", self)
}
}
}
/// Returns the type of the async destructor of this type.
pub fn async_destructor_ty(self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
match self.async_drop_glue_morphology(tcx) {
AsyncDropGlueMorphology::Noop => {
return Ty::async_destructor_combinator(tcx, LangItem::AsyncDropNoop)
.instantiate_identity();
}
AsyncDropGlueMorphology::DeferredDropInPlace => {
let drop_in_place =
Ty::async_destructor_combinator(tcx, LangItem::AsyncDropDeferredDropInPlace)
.instantiate(tcx, &[self.into()]);
return Ty::async_destructor_combinator(tcx, LangItem::AsyncDropFuse)
.instantiate(tcx, &[drop_in_place.into()]);
}
AsyncDropGlueMorphology::Custom => (),
}
match *self.kind() {
ty::Param(_) | ty::Alias(..) | ty::Infer(ty::TyVar(_)) => {
let assoc_items = tcx
.associated_item_def_ids(tcx.require_lang_item(LangItem::AsyncDestruct, None));
Ty::new_projection(tcx, assoc_items[0], [self])
}
ty::Array(elem_ty, _) | ty::Slice(elem_ty) => {
let dtor = Ty::async_destructor_combinator(tcx, LangItem::AsyncDropSlice)
.instantiate(tcx, &[elem_ty.into()]);
Ty::async_destructor_combinator(tcx, LangItem::AsyncDropFuse)
.instantiate(tcx, &[dtor.into()])
}
ty::Adt(adt_def, args) if adt_def.is_enum() || adt_def.is_struct() => self
.adt_async_destructor_ty(
tcx,
adt_def.variants().iter().map(|v| v.fields.iter().map(|f| f.ty(tcx, args))),
),
ty::Tuple(tys) => self.adt_async_destructor_ty(tcx, iter::once(tys)),
ty::Closure(_, args) => {
self.adt_async_destructor_ty(tcx, iter::once(args.as_closure().upvar_tys()))
}
ty::CoroutineClosure(_, args) => self
.adt_async_destructor_ty(tcx, iter::once(args.as_coroutine_closure().upvar_tys())),
ty::Adt(adt_def, _) => {
assert!(adt_def.is_union());
let surface_drop = self.surface_async_dropper_ty(tcx).unwrap();
Ty::async_destructor_combinator(tcx, LangItem::AsyncDropFuse)
.instantiate(tcx, &[surface_drop.into()])
}
ty::Bound(..)
| ty::Foreign(_)
| ty::Placeholder(_)
| ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
bug!("`async_destructor_ty` applied to unexpected type: {self:?}")
}
_ => bug!("`async_destructor_ty` is not yet implemented for type: {self:?}"),
}
}
fn adt_async_destructor_ty<I>(self, tcx: TyCtxt<'tcx>, variants: I) -> Ty<'tcx>
where
I: Iterator + ExactSizeIterator,
I::Item: IntoIterator<Item = Ty<'tcx>>,
{
debug_assert_eq!(self.async_drop_glue_morphology(tcx), AsyncDropGlueMorphology::Custom);
let defer = Ty::async_destructor_combinator(tcx, LangItem::AsyncDropDefer);
let chain = Ty::async_destructor_combinator(tcx, LangItem::AsyncDropChain);
let noop =
Ty::async_destructor_combinator(tcx, LangItem::AsyncDropNoop).instantiate_identity();
let either = Ty::async_destructor_combinator(tcx, LangItem::AsyncDropEither);
let variants_dtor = variants
.into_iter()
.map(|variant| {
variant
.into_iter()
.map(|ty| defer.instantiate(tcx, &[ty.into()]))
.reduce(|acc, next| chain.instantiate(tcx, &[acc.into(), next.into()]))
.unwrap_or(noop)
})
.reduce(|other, matched| {
either.instantiate(tcx, &[other.into(), matched.into(), self.into()])
})
.unwrap();
let dtor = if let Some(dropper_ty) = self.surface_async_dropper_ty(tcx) {
Ty::async_destructor_combinator(tcx, LangItem::AsyncDropChain)
.instantiate(tcx, &[dropper_ty.into(), variants_dtor.into()])
} else {
variants_dtor
};
Ty::async_destructor_combinator(tcx, LangItem::AsyncDropFuse)
.instantiate(tcx, &[dtor.into()])
}
fn surface_async_dropper_ty(self, tcx: TyCtxt<'tcx>) -> Option<Ty<'tcx>> {
let adt_def = self.ty_adt_def()?;
let dropper = adt_def
.async_destructor(tcx)
.map(|_| LangItem::SurfaceAsyncDropInPlace)
.or_else(|| adt_def.destructor(tcx).map(|_| LangItem::AsyncDropSurfaceDropInPlace))?;
Some(Ty::async_destructor_combinator(tcx, dropper).instantiate(tcx, &[self.into()]))
}
fn async_destructor_combinator(
tcx: TyCtxt<'tcx>,
lang_item: LangItem,
) -> ty::EarlyBinder<'tcx, Ty<'tcx>> {
tcx.fn_sig(tcx.require_lang_item(lang_item, None))
.map_bound(|fn_sig| fn_sig.output().no_bound_vars().unwrap())
}
/// Returns the type of metadata for (potentially fat) pointers to this type,
/// or the struct tail if the metadata type cannot be determined.
pub fn ptr_metadata_ty_or_tail(
self,
tcx: TyCtxt<'tcx>,
normalize: impl FnMut(Ty<'tcx>) -> Ty<'tcx>,
) -> Result<Ty<'tcx>, Ty<'tcx>> {
let tail = tcx.struct_tail_raw(self, normalize, || {});
match tail.kind() {
// Sized types
ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
| ty::Uint(_)
| ty::Int(_)
| ty::Bool
| ty::Float(_)
| ty::FnDef(..)
| ty::FnPtr(..)
| ty::RawPtr(..)
| ty::Char
| ty::Ref(..)
| ty::Coroutine(..)
| ty::CoroutineWitness(..)
| ty::Array(..)
| ty::Closure(..)
| ty::CoroutineClosure(..)
| ty::Never
| ty::Error(_)
// Extern types have metadata = ().
| ty::Foreign(..)
// `dyn*` has metadata = ().
| ty::Dynamic(_, _, ty::DynStar)
// If returned by `struct_tail_raw` this is a unit struct
// without any fields, or not a struct, and therefore is Sized.
| ty::Adt(..)
// If returned by `struct_tail_raw` this is the empty tuple,
// a.k.a. unit type, which is Sized
| ty::Tuple(..) => Ok(tcx.types.unit),
ty::Str | ty::Slice(_) => Ok(tcx.types.usize),
ty::Dynamic(_, _, ty::Dyn) => {
let dyn_metadata = tcx.require_lang_item(LangItem::DynMetadata, None);
Ok(tcx.type_of(dyn_metadata).instantiate(tcx, &[tail.into()]))
}
// We don't know the metadata of `self`, but it must be equal to the
// metadata of `tail`.
ty::Param(_) | ty::Alias(..) => Err(tail),
ty::Infer(ty::TyVar(_))
| ty::Pat(..)
| ty::Bound(..)
| ty::Placeholder(..)
| ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => bug!(
"`ptr_metadata_ty_or_tail` applied to unexpected type: {self:?} (tail = {tail:?})"
),
}
}
/// Returns the type of metadata for (potentially fat) pointers to this type.
/// Causes an ICE if the metadata type cannot be determined.
pub fn ptr_metadata_ty(
self,
tcx: TyCtxt<'tcx>,
normalize: impl FnMut(Ty<'tcx>) -> Ty<'tcx>,
) -> Ty<'tcx> {
match self.ptr_metadata_ty_or_tail(tcx, normalize) {
Ok(metadata) => metadata,
Err(tail) => bug!(
"`ptr_metadata_ty` failed to get metadata for type: {self:?} (tail = {tail:?})"
),
}
}
/// Given a pointer or reference type, returns the type of the *pointee*'s
/// metadata. If it can't be determined exactly (perhaps due to still
/// being generic) then a projection through `ptr::Pointee` will be returned.
///
/// This is particularly useful for getting the type of the result of
/// [`UnOp::PtrMetadata`](crate::mir::UnOp::PtrMetadata).
///
/// Panics if `self` is not dereferencable.
#[track_caller]
pub fn pointee_metadata_ty_or_projection(self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
let Some(pointee_ty) = self.builtin_deref(true) else {
bug!("Type {self:?} is not a pointer or reference type")
};
if pointee_ty.is_trivially_sized(tcx) {
tcx.types.unit
} else {
match pointee_ty.ptr_metadata_ty_or_tail(tcx, |x| x) {
Ok(metadata_ty) => metadata_ty,
Err(tail_ty) => {
let Some(metadata_def_id) = tcx.lang_items().metadata_type() else {
bug!("No metadata_type lang item while looking at {self:?}")
};
Ty::new_projection(tcx, metadata_def_id, [tail_ty])
}
}
}
}
/// When we create a closure, we record its kind (i.e., what trait
/// it implements, constrained by how it uses its borrows) into its
/// [`ty::ClosureArgs`] or [`ty::CoroutineClosureArgs`] using a type
/// parameter. This is kind of a phantom type, except that the
/// most convenient thing for us to are the integral types. This
/// function converts such a special type into the closure
/// kind. To go the other way, use [`Ty::from_closure_kind`].
///
/// Note that during type checking, we use an inference variable
/// to represent the closure kind, because it has not yet been
/// inferred. Once upvar inference (in `rustc_hir_analysis/src/check/upvar.rs`)
/// is complete, that type variable will be unified with one of
/// the integral types.
///
/// ```rust,ignore (snippet of compiler code)
/// if let TyKind::Closure(def_id, args) = closure_ty.kind()
/// && let Some(closure_kind) = args.as_closure().kind_ty().to_opt_closure_kind()
/// {
/// println!("{closure_kind:?}");
/// } else if let TyKind::CoroutineClosure(def_id, args) = closure_ty.kind()
/// && let Some(closure_kind) = args.as_coroutine_closure().kind_ty().to_opt_closure_kind()
/// {
/// println!("{closure_kind:?}");
/// }
/// ```
///
/// After upvar analysis, you should instead use [`ty::ClosureArgs::kind()`]
/// or [`ty::CoroutineClosureArgs::kind()`] to assert that the `ClosureKind`
/// has been constrained instead of manually calling this method.
///
/// ```rust,ignore (snippet of compiler code)
/// if let TyKind::Closure(def_id, args) = closure_ty.kind()
/// {
/// println!("{:?}", args.as_closure().kind());
/// } else if let TyKind::CoroutineClosure(def_id, args) = closure_ty.kind()
/// {
/// println!("{:?}", args.as_coroutine_closure().kind());
/// }
/// ```
pub fn to_opt_closure_kind(self) -> Option<ty::ClosureKind> {
match self.kind() {
Int(int_ty) => match int_ty {
ty::IntTy::I8 => Some(ty::ClosureKind::Fn),
ty::IntTy::I16 => Some(ty::ClosureKind::FnMut),
ty::IntTy::I32 => Some(ty::ClosureKind::FnOnce),
_ => bug!("cannot convert type `{:?}` to a closure kind", self),
},
// "Bound" types appear in canonical queries when the
// closure type is not yet known, and `Placeholder` and `Param`
// may be encountered in generic `AsyncFnKindHelper` goals.
Bound(..) | Placeholder(_) | Param(_) | Infer(_) => None,
Error(_) => Some(ty::ClosureKind::Fn),
_ => bug!("cannot convert type `{:?}` to a closure kind", self),
}
}
/// Inverse of [`Ty::to_opt_closure_kind`]. See docs on that method
/// for explanation of the relationship between `Ty` and [`ty::ClosureKind`].
pub fn from_closure_kind(tcx: TyCtxt<'tcx>, kind: ty::ClosureKind) -> Ty<'tcx> {
match kind {
ty::ClosureKind::Fn => tcx.types.i8,
ty::ClosureKind::FnMut => tcx.types.i16,
ty::ClosureKind::FnOnce => tcx.types.i32,
}
}
/// Like [`Ty::to_opt_closure_kind`], but it caps the "maximum" closure kind
/// to `FnMut`. This is because although we have three capability states,
/// `AsyncFn`/`AsyncFnMut`/`AsyncFnOnce`, we only need to distinguish two coroutine
/// bodies: by-ref and by-value.
///
/// See the definition of `AsyncFn` and `AsyncFnMut` and the `CallRefFuture`
/// associated type for why we don't distinguish [`ty::ClosureKind::Fn`] and
/// [`ty::ClosureKind::FnMut`] for the purpose of the generated MIR bodies.
///
/// This method should be used when constructing a `Coroutine` out of a
/// `CoroutineClosure`, when the `Coroutine`'s `kind` field is being populated
/// directly from the `CoroutineClosure`'s `kind`.
pub fn from_coroutine_closure_kind(tcx: TyCtxt<'tcx>, kind: ty::ClosureKind) -> Ty<'tcx> {
match kind {
ty::ClosureKind::Fn | ty::ClosureKind::FnMut => tcx.types.i16,
ty::ClosureKind::FnOnce => tcx.types.i32,
}
}
/// Fast path helper for testing if a type is `Sized`.
///
/// Returning true means the type is known to be sized. Returning
/// `false` means nothing -- could be sized, might not be.
///
/// Note that we could never rely on the fact that a type such as `[_]` is
/// trivially `!Sized` because we could be in a type environment with a
/// bound such as `[_]: Copy`. A function with such a bound obviously never
/// can be called, but that doesn't mean it shouldn't typecheck. This is why
/// this method doesn't return `Option<bool>`.
pub fn is_trivially_sized(self, tcx: TyCtxt<'tcx>) -> bool {
match self.kind() {
ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
| ty::Uint(_)
| ty::Int(_)
| ty::Bool
| ty::Float(_)
| ty::FnDef(..)
| ty::FnPtr(..)
| ty::RawPtr(..)
| ty::Char
| ty::Ref(..)
| ty::Coroutine(..)
| ty::CoroutineWitness(..)
| ty::Array(..)
| ty::Pat(..)
| ty::Closure(..)
| ty::CoroutineClosure(..)
| ty::Never
| ty::Error(_)
| ty::Dynamic(_, _, ty::DynStar) => true,
ty::Str | ty::Slice(_) | ty::Dynamic(_, _, ty::Dyn) | ty::Foreign(..) => false,
ty::Tuple(tys) => tys.last().map_or(true, |ty| ty.is_trivially_sized(tcx)),
ty::Adt(def, args) => def
.sized_constraint(tcx)
.map_or(true, |ty| ty.instantiate(tcx, args).is_trivially_sized(tcx)),
ty::Alias(..) | ty::Param(_) | ty::Placeholder(..) | ty::Bound(..) => false,
ty::Infer(ty::TyVar(_)) => false,
ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
bug!("`is_trivially_sized` applied to unexpected type: {:?}", self)
}
}
}
/// Fast path helper for primitives which are always `Copy` and which
/// have a side-effect-free `Clone` impl.
///
/// Returning true means the type is known to be pure and `Copy+Clone`.
/// Returning `false` means nothing -- could be `Copy`, might not be.
///
/// This is mostly useful for optimizations, as these are the types
/// on which we can replace cloning with dereferencing.
pub fn is_trivially_pure_clone_copy(self) -> bool {
match self.kind() {
ty::Bool | ty::Char | ty::Never => true,
// These aren't even `Clone`
ty::Str | ty::Slice(..) | ty::Foreign(..) | ty::Dynamic(..) => false,
ty::Infer(ty::InferTy::FloatVar(_) | ty::InferTy::IntVar(_))
| ty::Int(..)
| ty::Uint(..)
| ty::Float(..) => true,
// ZST which can't be named are fine.
ty::FnDef(..) => true,
ty::Array(element_ty, _len) => element_ty.is_trivially_pure_clone_copy(),
// A 100-tuple isn't "trivial", so doing this only for reasonable sizes.
ty::Tuple(field_tys) => {
field_tys.len() <= 3 && field_tys.iter().all(Self::is_trivially_pure_clone_copy)
}
ty::Pat(ty, _) => ty.is_trivially_pure_clone_copy(),
// Sometimes traits aren't implemented for every ABI or arity,
// because we can't be generic over everything yet.
ty::FnPtr(..) => false,
// Definitely absolutely not copy.
ty::Ref(_, _, hir::Mutability::Mut) => false,
// The standard library has a blanket Copy impl for shared references and raw pointers,
// for all unsized types.
ty::Ref(_, _, hir::Mutability::Not) | ty::RawPtr(..) => true,
ty::Coroutine(..) | ty::CoroutineWitness(..) => false,
// Might be, but not "trivial" so just giving the safe answer.
ty::Adt(..) | ty::Closure(..) | ty::CoroutineClosure(..) => false,
// Needs normalization or revealing to determine, so no is the safe answer.
ty::Alias(..) => false,
ty::Param(..) | ty::Infer(..) | ty::Error(..) => false,
ty::Bound(..) | ty::Placeholder(..) => {
bug!("`is_trivially_pure_clone_copy` applied to unexpected type: {:?}", self);
}
}
}
/// If `self` is a primitive, return its [`Symbol`].
pub fn primitive_symbol(self) -> Option<Symbol> {
match self.kind() {
ty::Bool => Some(sym::bool),
ty::Char => Some(sym::char),
ty::Float(f) => match f {
ty::FloatTy::F16 => Some(sym::f16),
ty::FloatTy::F32 => Some(sym::f32),
ty::FloatTy::F64 => Some(sym::f64),
ty::FloatTy::F128 => Some(sym::f128),
},
ty::Int(f) => match f {
ty::IntTy::Isize => Some(sym::isize),
ty::IntTy::I8 => Some(sym::i8),
ty::IntTy::I16 => Some(sym::i16),
ty::IntTy::I32 => Some(sym::i32),
ty::IntTy::I64 => Some(sym::i64),
ty::IntTy::I128 => Some(sym::i128),
},
ty::Uint(f) => match f {
ty::UintTy::Usize => Some(sym::usize),
ty::UintTy::U8 => Some(sym::u8),
ty::UintTy::U16 => Some(sym::u16),
ty::UintTy::U32 => Some(sym::u32),
ty::UintTy::U64 => Some(sym::u64),
ty::UintTy::U128 => Some(sym::u128),
},
_ => None,
}
}
pub fn is_c_void(self, tcx: TyCtxt<'_>) -> bool {
match self.kind() {
ty::Adt(adt, _) => tcx.is_lang_item(adt.did(), LangItem::CVoid),
_ => false,
}
}
/// Returns `true` when the outermost type cannot be further normalized,
/// resolved, or instantiated. This includes all primitive types, but also
/// things like ADTs and trait objects, since even if their arguments or
/// nested types may be further simplified, the outermost [`TyKind`] or
/// type constructor remains the same.
pub fn is_known_rigid(self) -> bool {
match self.kind() {
Bool
| Char
| Int(_)
| Uint(_)
| Float(_)
| Adt(_, _)
| Foreign(_)
| Str
| Array(_, _)
| Pat(_, _)
| Slice(_)
| RawPtr(_, _)
| Ref(_, _, _)
| FnDef(_, _)
| FnPtr(..)
| Dynamic(_, _, _)
| Closure(_, _)
| CoroutineClosure(_, _)
| Coroutine(_, _)
| CoroutineWitness(..)
| Never
| Tuple(_) => true,
Error(_) | Infer(_) | Alias(_, _) | Param(_) | Bound(_, _) | Placeholder(_) => false,
}
}
}
looks like it could be moved to TyKind (then I guess Ty should be made to deref to TyKind).

@rustbot
Copy link
Collaborator

rustbot commented Sep 4, 2024

r? @Nadrieril

rustbot has assigned @Nadrieril.
They will have a look at your PR within the next two weeks and either review your PR or reassign to another reviewer.

Use r? to explicitly pick a reviewer

@rustbot rustbot added S-waiting-on-review Status: Awaiting review from the assignee but also interested parties. T-compiler Relevant to the compiler team, which will review and decide on the PR/issue. labels Sep 4, 2024
@rustbot
Copy link
Collaborator

rustbot commented Sep 4, 2024

Some changes occurred to MIR optimizations

cc @rust-lang/wg-mir-opt

Some changes occurred in src/tools/clippy

cc @rust-lang/clippy

Some changes occurred to the CTFE / Miri engine

cc @rust-lang/miri

Copy link
Member

@compiler-errors compiler-errors left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Looks fine other than some nits and please rename boxed_ty_unchecked to expect_boxed_ty.

src/tools/clippy/clippy_lints/src/escape.rs Outdated Show resolved Hide resolved
compiler/rustc_middle/src/ty/sty.rs Outdated Show resolved Hide resolved
@rustbot rustbot added S-waiting-on-author Status: This is awaiting some action (such as code changes or more information) from the author. and removed S-waiting-on-review Status: Awaiting review from the assignee but also interested parties. labels Sep 5, 2024
@GrigorenkoPV
Copy link
Contributor Author

@rustbot author

Until I unbreak clippy

@GrigorenkoPV
Copy link
Contributor Author

@rustbot ready

@rustbot rustbot added S-waiting-on-review Status: Awaiting review from the assignee but also interested parties. and removed S-waiting-on-author Status: This is awaiting some action (such as code changes or more information) from the author. labels Sep 5, 2024
@compiler-errors
Copy link
Member

@bors r+ rollup

@bors
Copy link
Contributor

bors commented Sep 5, 2024

📌 Commit f6e8a84 has been approved by compiler-errors

It is now in the queue for this repository.

@bors bors added S-waiting-on-bors Status: Waiting on bors to run and complete tests. Bors will change the label on completion. and removed S-waiting-on-review Status: Awaiting review from the assignee but also interested parties. labels Sep 5, 2024
workingjubilee added a commit to workingjubilee/rustc that referenced this pull request Sep 6, 2024
…errors

Make `Ty::boxed_ty` return an `Option`

Looks like a good place to use Rust's type system.

---

Most of https://github.com/rust-lang/rust/blob/4ac7bcbaad8d6fd7a51bdf1b696cbc3ba4c796cf/compiler/rustc_middle/src/ty/sty.rs#L971-L1963 looks like it could be moved to `TyKind` (then I guess  `Ty` should be made to deref to `TyKind`).
workingjubilee added a commit to workingjubilee/rustc that referenced this pull request Sep 6, 2024
…errors

Make `Ty::boxed_ty` return an `Option`

Looks like a good place to use Rust's type system.

---

Most of https://github.com/rust-lang/rust/blob/4ac7bcbaad8d6fd7a51bdf1b696cbc3ba4c796cf/compiler/rustc_middle/src/ty/sty.rs#L971-L1963 looks like it could be moved to `TyKind` (then I guess  `Ty` should be made to deref to `TyKind`).
bors added a commit to rust-lang-ci/rust that referenced this pull request Sep 6, 2024
…kingjubilee

Rollup of 14 pull requests

Successful merges:

 - rust-lang#128919 (Add an internal lint that warns when accessing untracked data)
 - rust-lang#129021 (Check WF of source type's signature on fn pointer cast)
 - rust-lang#129472 (fix ICE when `asm_const` and `const_refs_to_static` are combined)
 - rust-lang#129653 (clarify that addr_of creates read-only pointers)
 - rust-lang#129775 (bootstrap: Try to track down why `initial_libdir` sometimes fails)
 - rust-lang#129781 (Make `./x.py <cmd> compiler/<crate>` aware of the crate's features)
 - rust-lang#129939 (explain why Rvalue::Len still exists)
 - rust-lang#129942 (copy rustc rustlib artifacts from ci-rustc)
 - rust-lang#129944 (Add compat note for trait solver change)
 - rust-lang#129947 (Add digit separators in `Duration` examples)
 - rust-lang#129955 (Temporarily remove fmease from the review rotation)
 - rust-lang#129957 (forward linker option to lint-docs)
 - rust-lang#129969 (Make `Ty::boxed_ty` return an `Option`)
 - rust-lang#129995 (Remove wasm32-wasip2's tier 2 status from release notes)

r? `@ghost`
`@rustbot` modify labels: rollup
bors added a commit to rust-lang-ci/rust that referenced this pull request Sep 6, 2024
…iaskrgr

Rollup of 6 pull requests

Successful merges:

 - rust-lang#129021 (Check WF of source type's signature on fn pointer cast)
 - rust-lang#129781 (Make `./x.py <cmd> compiler/<crate>` aware of the crate's features)
 - rust-lang#129963 (Inaccurate `{Path,OsStr}::to_string_lossy()` documentation)
 - rust-lang#129969 (Make `Ty::boxed_ty` return an `Option`)
 - rust-lang#129995 (Remove wasm32-wasip2's tier 2 status from release notes)
 - rust-lang#130013 (coverage: Count await when the Future is immediately ready )

r? `@ghost`
`@rustbot` modify labels: rollup
@bors bors merged commit 0180b8f into rust-lang:master Sep 6, 2024
6 checks passed
@rustbot rustbot added this to the 1.83.0 milestone Sep 6, 2024
rust-timer added a commit to rust-lang-ci/rust that referenced this pull request Sep 6, 2024
Rollup merge of rust-lang#129969 - GrigorenkoPV:boxed-ty, r=compiler-errors

Make `Ty::boxed_ty` return an `Option`

Looks like a good place to use Rust's type system.

---

Most of https://github.com/rust-lang/rust/blob/4ac7bcbaad8d6fd7a51bdf1b696cbc3ba4c796cf/compiler/rustc_middle/src/ty/sty.rs#L971-L1963 looks like it could be moved to `TyKind` (then I guess  `Ty` should be made to deref to `TyKind`).
@GrigorenkoPV GrigorenkoPV deleted the boxed-ty branch September 6, 2024 17:46
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
S-waiting-on-bors Status: Waiting on bors to run and complete tests. Bors will change the label on completion. T-compiler Relevant to the compiler team, which will review and decide on the PR/issue.
Projects
None yet
Development

Successfully merging this pull request may close these issues.

8 participants