-
Notifications
You must be signed in to change notification settings - Fork 13k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
auto merge of #10478 : TeXitoi/rust/shootout-meteor, r=brson
This implementation of the meteor contest implements: - insertion check with bit trick; - pregenetation of every feasible placement of the pieces on the board; - filtering of placement that implies unfeasible board - central symetry breaking related to #2776
- Loading branch information
Showing
1 changed file
with
281 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,281 @@ | ||
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT | ||
// file at the top-level directory of this distribution and at | ||
// http://rust-lang.org/COPYRIGHT. | ||
// | ||
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or | ||
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license | ||
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your | ||
// option. This file may not be copied, modified, or distributed | ||
// except according to those terms. | ||
|
||
// | ||
// Utilities. | ||
// | ||
|
||
// returns an infinite iterator of repeated applications of f to x, | ||
// i.e. [x, f(x), f(f(x)), ...], as haskell iterate function. | ||
fn iterate<'a, T>(x: T, f: &'a fn(&T) -> T) -> Iterate<'a, T> { | ||
Iterate {f: f, next: x} | ||
} | ||
struct Iterate<'self, T> { | ||
priv f: &'self fn(&T) -> T, | ||
priv next: T | ||
} | ||
impl<'self, T> Iterator<T> for Iterate<'self, T> { | ||
fn next(&mut self) -> Option<T> { | ||
let mut res = (self.f)(&self.next); | ||
std::util::swap(&mut res, &mut self.next); | ||
Some(res) | ||
} | ||
} | ||
|
||
// a linked list using borrowed next. | ||
enum List<'self, T> { | ||
Nil, | ||
Cons(T, &'self List<'self, T>) | ||
} | ||
struct ListIterator<'self, T> { | ||
priv cur: &'self List<'self, T> | ||
} | ||
impl<'self, T> List<'self, T> { | ||
fn iter(&'self self) -> ListIterator<'self, T> { | ||
ListIterator{cur: self} | ||
} | ||
} | ||
impl<'self, T> Iterator<&'self T> for ListIterator<'self, T> { | ||
fn next(&mut self) -> Option<&'self T> { | ||
match *self.cur { | ||
Nil => None, | ||
Cons(ref elt, next) => { | ||
self.cur = next; | ||
Some(elt) | ||
} | ||
} | ||
} | ||
} | ||
|
||
// | ||
// preprocess | ||
// | ||
|
||
// Takes a pieces p on the form [(y1, x1), (y2, x2), ...] and returns | ||
// every possible transformations (the 6 rotations with their | ||
// corresponding mirrored piece), with, as minimum coordinates, (0, | ||
// 0). If all is false, only generate half of the possibilities (used | ||
// to break the symetry of the board). | ||
fn transform(piece: ~[(int, int)], all: bool) -> ~[~[(int, int)]] { | ||
let mut res = | ||
// rotations | ||
iterate(piece, |rot| rot.iter().map(|&(y, x)| (x + y, -y)).collect()) | ||
.take(if all {6} else {3}) | ||
// mirror | ||
.flat_map(|cur_piece| { | ||
iterate(cur_piece, |mir| mir.iter().map(|&(y, x)| (x, y)).collect()) | ||
.take(2) | ||
}).to_owned_vec(); | ||
|
||
// translating to (0, 0) as minimum coordinates. | ||
for cur_piece in res.mut_iter() { | ||
let (dy, dx) = *cur_piece.iter().min_by(|e| *e).unwrap(); | ||
for &(ref mut y, ref mut x) in cur_piece.mut_iter() { | ||
*y -= dy; *x -= dx; | ||
} | ||
} | ||
|
||
res | ||
} | ||
|
||
// A mask is a piece somewere on the board. It is represented as a | ||
// u64: for i in the first 50 bits, m[i] = 1 if the cell at (i/5, i%5) | ||
// is occuped. m[50 + id] = 1 if the identifier of the piece is id. | ||
|
||
// Takes a piece with minimum coordinate (0, 0) (as generated by | ||
// transform). Returns the corresponding mask if p translated by (dy, | ||
// dx) is on the board. | ||
fn mask(dy: int, dx: int, id: uint, p: &[(int, int)]) -> Option<u64> { | ||
let mut m = 1 << (50 + id); | ||
for &(y, x) in p.iter() { | ||
let x = x + dx + (y + (dy % 2)) / 2; | ||
if x < 0 || x > 4 {return None;} | ||
let y = y + dy; | ||
if y < 0 || y > 9 {return None;} | ||
m |= 1 << (y * 5 + x); | ||
} | ||
Some(m) | ||
} | ||
|
||
// Makes every possible masks. masks[id][i] correspond to every | ||
// possible masks for piece with identifier id with minimum coordinate | ||
// (i/5, i%5). | ||
fn make_masks() -> ~[~[~[u64]]] { | ||
let pieces = ~[ | ||
~[(0,0),(0,1),(0,2),(0,3),(1,3)], | ||
~[(0,0),(0,2),(0,3),(1,0),(1,1)], | ||
~[(0,0),(0,1),(0,2),(1,2),(2,1)], | ||
~[(0,0),(0,1),(0,2),(1,1),(2,1)], | ||
~[(0,0),(0,2),(1,0),(1,1),(2,1)], | ||
~[(0,0),(0,1),(0,2),(1,1),(1,2)], | ||
~[(0,0),(0,1),(1,1),(1,2),(2,1)], | ||
~[(0,0),(0,1),(0,2),(1,0),(1,2)], | ||
~[(0,0),(0,1),(0,2),(1,2),(1,3)], | ||
~[(0,0),(0,1),(0,2),(0,3),(1,2)]]; | ||
let mut res = ~[]; | ||
for (id, p) in pieces.move_iter().enumerate() { | ||
// To break the central symetry of the problem, every | ||
// transformation must be taken except for one piece (piece 3 | ||
// here). | ||
let trans = transform(p, id != 3); | ||
let mut cur_piece = ~[]; | ||
for dy in range(0, 10) { | ||
for dx in range(0, 5) { | ||
let masks = | ||
trans.iter() | ||
.filter_map(|t| mask(dy, dx, id, *t)) | ||
.collect(); | ||
cur_piece.push(masks); | ||
} | ||
} | ||
res.push(cur_piece); | ||
} | ||
res | ||
} | ||
|
||
// Check if all coordinates can be covered by an unused piece and that | ||
// all unused piece can be placed on the board. | ||
fn is_board_unfeasible(board: u64, masks: &[~[~[u64]]]) -> bool { | ||
let mut coverable = board; | ||
for i in range(0, 50).filter(|&i| board & 1 << i == 0) { | ||
for (cur_id, pos_masks) in masks.iter().enumerate() { | ||
if board & 1 << (50 + cur_id) != 0 {continue;} | ||
for &cur_m in pos_masks[i].iter() { | ||
if cur_m & board == 0 {coverable |= cur_m;} | ||
} | ||
} | ||
if coverable & (1 << i) == 0 {return true;} | ||
} | ||
// check if every coordinates can be covered and every piece can | ||
// be used. | ||
coverable != (1 << 60) - 1 | ||
} | ||
|
||
// Filter the masks that we can prove to result to unfeasible board. | ||
fn filter_masks(masks: &[~[~[u64]]]) -> ~[~[~[u64]]] { | ||
masks.iter().map( | ||
|p| p.iter().map( | ||
|p| p.iter() | ||
.map(|&m| m) | ||
.filter(|&m| !is_board_unfeasible(m, masks)) | ||
.collect()) | ||
.collect()) | ||
.collect() | ||
} | ||
|
||
// Gets the identifier of a mask. | ||
fn get_id(m: u64) -> u8 { | ||
for id in range(0, 10) { | ||
if m & (1 << (id + 50)) != 0 {return id as u8;} | ||
} | ||
fail!("{:016x} does not have a valid identifier", m); | ||
} | ||
|
||
// Converts a list of mask to a ~str. | ||
fn to_utf8(raw_sol: &List<u64>) -> ~str { | ||
let mut sol: ~[u8] = std::vec::from_elem(50, '.' as u8); | ||
for &m in raw_sol.iter() { | ||
let id = get_id(m); | ||
for i in range(0, 50) { | ||
if m & 1 << i != 0 {sol[i] = '0' as u8 + id;} | ||
} | ||
} | ||
std::str::from_utf8_owned(sol) | ||
} | ||
|
||
// Prints a solution in ~str form. | ||
fn print_sol(sol: &str) { | ||
for (i, c) in sol.iter().enumerate() { | ||
if (i) % 5 == 0 {println("");} | ||
if (i + 5) % 10 == 0 {print(" ");} | ||
print!("{} ", c); | ||
} | ||
println(""); | ||
} | ||
|
||
// The data managed during the search | ||
struct Data { | ||
// If more than stop_after is found, stop the search. | ||
stop_after: int, | ||
// Number of solution found. | ||
nb: int, | ||
// Lexicographically minimal solution found. | ||
min: ~str, | ||
// Lexicographically maximal solution found. | ||
max: ~str | ||
} | ||
|
||
// Records a new found solution. Returns false if the search must be | ||
// stopped. | ||
fn handle_sol(raw_sol: &List<u64>, data: &mut Data) -> bool { | ||
// because we break the symetry, 2 solutions correspond to a call | ||
// to this method: the normal solution, and the same solution in | ||
// reverse order, i.e. the board rotated by half a turn. | ||
data.nb += 2; | ||
let sol1 = to_utf8(raw_sol); | ||
let sol2: ~str = sol1.iter().invert().collect(); | ||
|
||
if data.nb == 2 { | ||
data.min = sol1.clone(); | ||
data.max = sol1.clone(); | ||
} | ||
|
||
if sol1 < data.min {data.min = sol1.clone();} | ||
if sol2 < data.min {data.min = sol2.clone();} | ||
if sol1 > data.max {data.max = sol1;} | ||
if sol2 > data.max {data.max = sol2;} | ||
data.nb < data.stop_after | ||
} | ||
|
||
// Search for every solutions. Returns false if the search was | ||
// stopped before the end. | ||
fn search( | ||
masks: &[~[~[u64]]], | ||
board: u64, | ||
mut i: int, | ||
cur: List<u64>, | ||
data: &mut Data) | ||
-> bool | ||
{ | ||
// Search for the lesser empty coordinate. | ||
while board & (1 << i) != 0 && i < 50 {i += 1;} | ||
// the board is full: a solution is found. | ||
if i >= 50 {return handle_sol(&cur, data);} | ||
|
||
// for every unused piece | ||
for id in range(0, 10).filter(|id| board & (1 << (id + 50)) == 0) { | ||
// for each mask that fits on the board | ||
for &m in masks[id][i].iter().filter(|&m| board & *m == 0) { | ||
// This check is too costy. | ||
//if is_board_unfeasible(board | m, masks) {continue;} | ||
if !search(masks, board | m, i + 1, Cons(m, &cur), data) { | ||
return false; | ||
} | ||
} | ||
} | ||
return true; | ||
} | ||
|
||
fn main () { | ||
let args = std::os::args(); | ||
let stop_after = if args.len() <= 1 { | ||
2098 | ||
} else { | ||
from_str(args[1]).unwrap() | ||
}; | ||
let masks = make_masks(); | ||
let masks = filter_masks(masks); | ||
let mut data = Data {stop_after: stop_after, nb: 0, min: ~"", max: ~""}; | ||
search(masks, 0, 0, Nil, &mut data); | ||
println!("{} solutions found", data.nb); | ||
print_sol(data.min); | ||
print_sol(data.max); | ||
println(""); | ||
} |