Skip to content

Commit

Permalink
Improve maybe_uninit_extra docs
Browse files Browse the repository at this point in the history
For reasoning, see #63567 (comment)
  • Loading branch information
est31 committed Jun 14, 2021
1 parent 66ba810 commit 8710258
Showing 1 changed file with 67 additions and 13 deletions.
80 changes: 67 additions & 13 deletions library/core/src/mem/maybe_uninit.rs
Original file line number Diff line number Diff line change
Expand Up @@ -402,10 +402,60 @@ impl<T> MaybeUninit<T> {
u
}

/// Sets the value of the `MaybeUninit<T>`. This overwrites any previous value
/// without dropping it, so be careful not to use this twice unless you want to
/// skip running the destructor. For your convenience, this also returns a mutable
/// reference to the (now safely initialized) contents of `self`.
/// Sets the value of the `MaybeUninit<T>`.
///
/// This overwrites any previous value without dropping it, so be careful
/// not to use this twice unless you want to skip running the destructor.
/// For your convenience, this also returns a mutable reference to the
/// (now safely initialized) contents of `self`.
///
/// As the content is stored inside a `MaybeUninit`, the destructor is not
/// ran for the inner data if the MaybeUninit leaves scope without a call to
/// [`assume_init`], [`assume_init_drop`], or similar. Code that receives
/// the mutable reference returned by this function needs to keep this in
/// mind. The safety model of Rust regards leaks as safe, but they are
/// usually still undesirable. This being said, the mutable reference
/// behaves like any other mutable reference would, so assigning a new value
/// to it will drop the old content.
///
/// [`assume_init`]: Self::assume_init
/// [`assume_init_drop`]: Self::assume_init_drop
///
/// # Examples
///
/// Correct usage of this method:
///
/// ```rust
/// #![feature(maybe_uninit_extra)]
/// use std::mem::MaybeUninit;
///
/// let mut x = MaybeUninit::<Vec<u8>>::uninit();
///
/// {
/// let hello = x.write((&b"Hello, world!").to_vec());
/// // Setting hello does not leak prior allocations, but drops them
/// *hello = (&b"Hello").to_vec();
/// hello[0] = 'h' as u8;
/// }
/// // x is initialized now:
/// let s = unsafe { x.assume_init() };
/// assert_eq!(b"hello", s.as_slice());
/// ```
///
/// This usage of the method causes a leak:
///
/// ```rust
/// #![feature(maybe_uninit_extra)]
/// use std::mem::MaybeUninit;
///
/// let mut x = MaybeUninit::<String>::uninit();
///
/// x.write("Hello".to_string());
/// // This leaks the contained string:
/// x.write("hello".to_string());
/// // x is initialized now:
/// let s = unsafe { x.assume_init() };
/// ```
#[unstable(feature = "maybe_uninit_extra", issue = "63567")]
#[rustc_const_unstable(feature = "maybe_uninit_extra", issue = "63567")]
#[inline(always)]
Expand Down Expand Up @@ -564,9 +614,11 @@ impl<T> MaybeUninit<T> {
/// behavior. The [type-level documentation][inv] contains more information about
/// this initialization invariant.
///
/// Moreover, this leaves a copy of the same data behind in the `MaybeUninit<T>`. When using
/// multiple copies of the data (by calling `assume_init_read` multiple times, or first
/// calling `assume_init_read` and then [`assume_init`]), it is your responsibility
/// Moreover, similar to the [`ptr::read`] function, this function creates a
/// bitwise copy of the contents, regardless whether the contained type
/// implements the [`Copy`] trait or not. When using multiple copies of the
/// data (by calling `assume_init_read` multiple times, or first calling
/// `assume_init_read` and then [`assume_init`]), it is your responsibility
/// to ensure that that data may indeed be duplicated.
///
/// [inv]: #initialization-invariant
Expand Down Expand Up @@ -622,7 +674,8 @@ impl<T> MaybeUninit<T> {

/// Drops the contained value in place.
///
/// If you have ownership of the `MaybeUninit`, you can use [`assume_init`] instead.
/// If you have ownership of the `MaybeUninit`, you can also use
/// [`assume_init`] as an alternative.
///
/// # Safety
///
Expand All @@ -632,11 +685,12 @@ impl<T> MaybeUninit<T> {
///
/// On top of that, all additional invariants of the type `T` must be
/// satisfied, as the `Drop` implementation of `T` (or its members) may
/// rely on this. For example, a `1`-initialized [`Vec<T>`] is considered
/// initialized (under the current implementation; this does not constitute
/// a stable guarantee) because the only requirement the compiler knows
/// about it is that the data pointer must be non-null. Dropping such a
/// `Vec<T>` however will cause undefined behaviour.
/// rely on this. For example, setting a [`Vec<T>`] to an invalid but
/// non-null address makes it initialized (under the current implementation;
/// this does not constitute a stable guarantee), because the only
/// requirement the compiler knows about it is that the data pointer must be
/// non-null. Dropping such a `Vec<T>` however will cause undefined
/// behaviour.
///
/// [`assume_init`]: MaybeUninit::assume_init
/// [`Vec<T>`]: ../../std/vec/struct.Vec.html
Expand Down

0 comments on commit 8710258

Please sign in to comment.