-
Notifications
You must be signed in to change notification settings - Fork 13k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Auto merge of #23011 - nagisa:the-war-of-symbol-and-symbol, r=pnkfelix
We provide tools to tell what exact symbols to emit for any fn or static, but don’t quite check if that won’t cause any issues later on. Some of the issues include LLVM mangling our names again and our names pointing to wrong locations, us generating dumb foreign call wrappers, linker errors, extern functions resolving to different symbols altogether (`extern {fn fail();} fail();` in some cases calling `fail1()`), etc. Before the commit we had a function called `note_unique_llvm_symbol`, so it is clear somebody was aware of the issue at some point, but the function was barely used, mostly in irrelevant locations. Along with working on it I took liberty to start refactoring trans/base into a few smaller modules. The refactoring is incomplete and I hope I will find some motivation to carry on with it. This is possibly a [breaking-change] because it makes dumbly written code properly invalid. This fixes all those issues about incorrect use of #[no_mangle] being not reported/misreported/ICEd by the compiler. NB. This PR does not attempt to tackle the parallel codegen issue that was mentioned in #22811, but I believe it should be very straightforward in a follow up PR by modifying `trans::declare::get_defined_value` to look at all the contexts. cc @alexcrichton @huonw @nrc because you commented on the original RFC issue. EDIT: wow, this became much bigger than I initially intended.
- Loading branch information
Showing
27 changed files
with
1,034 additions
and
666 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,281 @@ | ||
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT | ||
// file at the top-level directory of this distribution and at | ||
// http://rust-lang.org/COPYRIGHT. | ||
// | ||
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or | ||
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license | ||
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your | ||
// option. This file may not be copied, modified, or distributed | ||
// except according to those terms. | ||
//! Set and unset common attributes on LLVM values. | ||
use libc::{c_uint, c_ulonglong}; | ||
use llvm::{self, ValueRef, AttrHelper}; | ||
use middle::ty::{self, ClosureTyper}; | ||
use syntax::abi; | ||
use syntax::ast; | ||
pub use syntax::attr::InlineAttr; | ||
use trans::base; | ||
use trans::common; | ||
use trans::context::CrateContext; | ||
use trans::machine; | ||
use trans::type_of; | ||
|
||
/// Mark LLVM function to use split stack. | ||
#[inline] | ||
pub fn split_stack(val: ValueRef, set: bool) { | ||
unsafe { | ||
let attr = "split-stack\0".as_ptr() as *const _; | ||
if set { | ||
llvm::LLVMAddFunctionAttrString(val, llvm::FunctionIndex as c_uint, attr); | ||
} else { | ||
llvm::LLVMRemoveFunctionAttrString(val, llvm::FunctionIndex as c_uint, attr); | ||
} | ||
} | ||
} | ||
|
||
/// Mark LLVM function to use provided inline heuristic. | ||
#[inline] | ||
pub fn inline(val: ValueRef, inline: InlineAttr) { | ||
use self::InlineAttr::*; | ||
match inline { | ||
Hint => llvm::SetFunctionAttribute(val, llvm::InlineHintAttribute), | ||
Always => llvm::SetFunctionAttribute(val, llvm::AlwaysInlineAttribute), | ||
Never => llvm::SetFunctionAttribute(val, llvm::NoInlineAttribute), | ||
None => { | ||
let attr = llvm::InlineHintAttribute | | ||
llvm::AlwaysInlineAttribute | | ||
llvm::NoInlineAttribute; | ||
unsafe { | ||
llvm::LLVMRemoveFunctionAttr(val, attr.bits() as c_ulonglong) | ||
} | ||
}, | ||
}; | ||
} | ||
|
||
/// Tell LLVM to emit or not emit the information necessary to unwind the stack for the function. | ||
#[inline] | ||
pub fn emit_uwtable(val: ValueRef, emit: bool) { | ||
if emit { | ||
llvm::SetFunctionAttribute(val, llvm::UWTableAttribute); | ||
} else { | ||
unsafe { | ||
llvm::LLVMRemoveFunctionAttr(val, llvm::UWTableAttribute.bits() as c_ulonglong); | ||
} | ||
} | ||
} | ||
|
||
/// Tell LLVM whether the function can or cannot unwind. | ||
#[inline] | ||
#[allow(dead_code)] // possibly useful function | ||
pub fn unwind(val: ValueRef, can_unwind: bool) { | ||
if can_unwind { | ||
unsafe { | ||
llvm::LLVMRemoveFunctionAttr(val, llvm::NoUnwindAttribute.bits() as c_ulonglong); | ||
} | ||
} else { | ||
llvm::SetFunctionAttribute(val, llvm::NoUnwindAttribute); | ||
} | ||
} | ||
|
||
/// Tell LLVM whether it should optimise function for size. | ||
#[inline] | ||
#[allow(dead_code)] // possibly useful function | ||
pub fn set_optimize_for_size(val: ValueRef, optimize: bool) { | ||
if optimize { | ||
llvm::SetFunctionAttribute(val, llvm::OptimizeForSizeAttribute); | ||
} else { | ||
unsafe { | ||
llvm::LLVMRemoveFunctionAttr(val, llvm::OptimizeForSizeAttribute.bits() as c_ulonglong); | ||
} | ||
} | ||
} | ||
|
||
/// Composite function which sets LLVM attributes for function depending on its AST (#[attribute]) | ||
/// attributes. | ||
pub fn from_fn_attrs(ccx: &CrateContext, attrs: &[ast::Attribute], llfn: ValueRef) { | ||
use syntax::attr::*; | ||
inline(llfn, find_inline_attr(Some(ccx.sess().diagnostic()), attrs)); | ||
|
||
for attr in attrs { | ||
if attr.check_name("no_stack_check") { | ||
split_stack(llfn, false); | ||
} else if attr.check_name("cold") { | ||
unsafe { | ||
llvm::LLVMAddFunctionAttribute(llfn, | ||
llvm::FunctionIndex as c_uint, | ||
llvm::ColdAttribute as u64) | ||
} | ||
} else if attr.check_name("allocator") { | ||
llvm::NoAliasAttribute.apply_llfn(llvm::ReturnIndex as c_uint, llfn); | ||
} | ||
} | ||
} | ||
|
||
/// Composite function which converts function type into LLVM attributes for the function. | ||
pub fn from_fn_type<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, fn_type: ty::Ty<'tcx>) | ||
-> llvm::AttrBuilder { | ||
use middle::ty::{BrAnon, ReLateBound}; | ||
|
||
let function_type; | ||
let (fn_sig, abi, env_ty) = match fn_type.sty { | ||
ty::ty_bare_fn(_, ref f) => (&f.sig, f.abi, None), | ||
ty::ty_closure(closure_did, substs) => { | ||
let typer = common::NormalizingClosureTyper::new(ccx.tcx()); | ||
function_type = typer.closure_type(closure_did, substs); | ||
let self_type = base::self_type_for_closure(ccx, closure_did, fn_type); | ||
(&function_type.sig, abi::RustCall, Some(self_type)) | ||
} | ||
_ => ccx.sess().bug("expected closure or function.") | ||
}; | ||
|
||
let fn_sig = ty::erase_late_bound_regions(ccx.tcx(), fn_sig); | ||
|
||
let mut attrs = llvm::AttrBuilder::new(); | ||
let ret_ty = fn_sig.output; | ||
|
||
// These have an odd calling convention, so we need to manually | ||
// unpack the input ty's | ||
let input_tys = match fn_type.sty { | ||
ty::ty_closure(..) => { | ||
assert!(abi == abi::RustCall); | ||
|
||
match fn_sig.inputs[0].sty { | ||
ty::ty_tup(ref inputs) => { | ||
let mut full_inputs = vec![env_ty.expect("Missing closure environment")]; | ||
full_inputs.push_all(inputs); | ||
full_inputs | ||
} | ||
_ => ccx.sess().bug("expected tuple'd inputs") | ||
} | ||
}, | ||
ty::ty_bare_fn(..) if abi == abi::RustCall => { | ||
let mut inputs = vec![fn_sig.inputs[0]]; | ||
|
||
match fn_sig.inputs[1].sty { | ||
ty::ty_tup(ref t_in) => { | ||
inputs.push_all(&t_in[..]); | ||
inputs | ||
} | ||
_ => ccx.sess().bug("expected tuple'd inputs") | ||
} | ||
} | ||
_ => fn_sig.inputs.clone() | ||
}; | ||
|
||
// Index 0 is the return value of the llvm func, so we start at 1 | ||
let mut first_arg_offset = 1; | ||
if let ty::FnConverging(ret_ty) = ret_ty { | ||
// A function pointer is called without the declaration | ||
// available, so we have to apply any attributes with ABI | ||
// implications directly to the call instruction. Right now, | ||
// the only attribute we need to worry about is `sret`. | ||
if type_of::return_uses_outptr(ccx, ret_ty) { | ||
let llret_sz = machine::llsize_of_real(ccx, type_of::type_of(ccx, ret_ty)); | ||
|
||
// The outptr can be noalias and nocapture because it's entirely | ||
// invisible to the program. We also know it's nonnull as well | ||
// as how many bytes we can dereference | ||
attrs.arg(1, llvm::StructRetAttribute) | ||
.arg(1, llvm::NoAliasAttribute) | ||
.arg(1, llvm::NoCaptureAttribute) | ||
.arg(1, llvm::DereferenceableAttribute(llret_sz)); | ||
|
||
// Add one more since there's an outptr | ||
first_arg_offset += 1; | ||
} else { | ||
// The `noalias` attribute on the return value is useful to a | ||
// function ptr caller. | ||
match ret_ty.sty { | ||
// `~` pointer return values never alias because ownership | ||
// is transferred | ||
ty::ty_uniq(it) if common::type_is_sized(ccx.tcx(), it) => { | ||
attrs.ret(llvm::NoAliasAttribute); | ||
} | ||
_ => {} | ||
} | ||
|
||
// We can also mark the return value as `dereferenceable` in certain cases | ||
match ret_ty.sty { | ||
// These are not really pointers but pairs, (pointer, len) | ||
ty::ty_rptr(_, ty::mt { ty: inner, .. }) | ||
| ty::ty_uniq(inner) if common::type_is_sized(ccx.tcx(), inner) => { | ||
let llret_sz = machine::llsize_of_real(ccx, type_of::type_of(ccx, inner)); | ||
attrs.ret(llvm::DereferenceableAttribute(llret_sz)); | ||
} | ||
_ => {} | ||
} | ||
|
||
if let ty::ty_bool = ret_ty.sty { | ||
attrs.ret(llvm::ZExtAttribute); | ||
} | ||
} | ||
} | ||
|
||
for (idx, &t) in input_tys.iter().enumerate().map(|(i, v)| (i + first_arg_offset, v)) { | ||
match t.sty { | ||
// this needs to be first to prevent fat pointers from falling through | ||
_ if !common::type_is_immediate(ccx, t) => { | ||
let llarg_sz = machine::llsize_of_real(ccx, type_of::type_of(ccx, t)); | ||
|
||
// For non-immediate arguments the callee gets its own copy of | ||
// the value on the stack, so there are no aliases. It's also | ||
// program-invisible so can't possibly capture | ||
attrs.arg(idx, llvm::NoAliasAttribute) | ||
.arg(idx, llvm::NoCaptureAttribute) | ||
.arg(idx, llvm::DereferenceableAttribute(llarg_sz)); | ||
} | ||
|
||
ty::ty_bool => { | ||
attrs.arg(idx, llvm::ZExtAttribute); | ||
} | ||
|
||
// `~` pointer parameters never alias because ownership is transferred | ||
ty::ty_uniq(inner) => { | ||
let llsz = machine::llsize_of_real(ccx, type_of::type_of(ccx, inner)); | ||
|
||
attrs.arg(idx, llvm::NoAliasAttribute) | ||
.arg(idx, llvm::DereferenceableAttribute(llsz)); | ||
} | ||
|
||
// `&mut` pointer parameters never alias other parameters, or mutable global data | ||
// | ||
// `&T` where `T` contains no `UnsafeCell<U>` is immutable, and can be marked as both | ||
// `readonly` and `noalias`, as LLVM's definition of `noalias` is based solely on | ||
// memory dependencies rather than pointer equality | ||
ty::ty_rptr(b, mt) if mt.mutbl == ast::MutMutable || | ||
!ty::type_contents(ccx.tcx(), mt.ty).interior_unsafe() => { | ||
|
||
let llsz = machine::llsize_of_real(ccx, type_of::type_of(ccx, mt.ty)); | ||
attrs.arg(idx, llvm::NoAliasAttribute) | ||
.arg(idx, llvm::DereferenceableAttribute(llsz)); | ||
|
||
if mt.mutbl == ast::MutImmutable { | ||
attrs.arg(idx, llvm::ReadOnlyAttribute); | ||
} | ||
|
||
if let ReLateBound(_, BrAnon(_)) = *b { | ||
attrs.arg(idx, llvm::NoCaptureAttribute); | ||
} | ||
} | ||
|
||
// When a reference in an argument has no named lifetime, it's impossible for that | ||
// reference to escape this function (returned or stored beyond the call by a closure). | ||
ty::ty_rptr(&ReLateBound(_, BrAnon(_)), mt) => { | ||
let llsz = machine::llsize_of_real(ccx, type_of::type_of(ccx, mt.ty)); | ||
attrs.arg(idx, llvm::NoCaptureAttribute) | ||
.arg(idx, llvm::DereferenceableAttribute(llsz)); | ||
} | ||
|
||
// & pointer parameters are also never null and we know exactly how | ||
// many bytes we can dereference | ||
ty::ty_rptr(_, mt) => { | ||
let llsz = machine::llsize_of_real(ccx, type_of::type_of(ccx, mt.ty)); | ||
attrs.arg(idx, llvm::DereferenceableAttribute(llsz)); | ||
} | ||
_ => () | ||
} | ||
} | ||
|
||
attrs | ||
} |
Oops, something went wrong.