Skip to content

Commit

Permalink
fix: add at::adaptive_avg_pool1d in interpolate plugin and fix pytorc…
Browse files Browse the repository at this point in the history
…h#791

Signed-off-by: Ruoqian Guo <ruoqiang@nvidia.com>
  • Loading branch information
ruoqianguo committed Dec 30, 2021
1 parent f6f5e3e commit deb9f74
Show file tree
Hide file tree
Showing 3 changed files with 34 additions and 18 deletions.
24 changes: 6 additions & 18 deletions core/conversion/converters/impl/pooling.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,7 @@ bool AdaptivePoolingConverter(
ConversionCtx* ctx,
const torch::jit::Node* n,
args& args,
nvinfer1::PoolingType pool_type) {
nvinfer1::PoolingType pool_type, const std::string& mode) {
auto in = args[0].ITensorOrFreeze(ctx);
auto out_size = util::toDims(args[1].unwrapToIntList());

Expand All @@ -48,15 +48,7 @@ bool AdaptivePoolingConverter(
}

auto orig_dims = in->getDimensions();
bool expandDims = (orig_dims.nbDims < 4);
TORCHTRT_CHECK(orig_dims.nbDims > 2, "Unable to create pooling layer from node: " << *n);
if (expandDims) {
in = addPadding(ctx, n, in, 4, false, false);
}

if (out_size.nbDims == 1) {
out_size = util::unsqueezeDims(out_size, 0, 1);
}
TORCHTRT_CHECK(orig_dims.nbDims > 1, "Unable to create pooling layer from node: " << *n);

auto in_shape = util::toVec(in->getDimensions());
nvinfer1::ILayer* new_layer = nullptr;
Expand Down Expand Up @@ -90,10 +82,6 @@ bool AdaptivePoolingConverter(
int32_t use_scales_casted = 0;
f.emplace_back(nvinfer1::PluginField("use_scales", &use_scales_casted, nvinfer1::PluginFieldType::kINT32, 1));

std::string mode = "adaptive_avg_pool2d";
if (pool_type == nvinfer1::PoolingType::kMAX) {
mode = "adaptive_max_pool2d";
}
f.emplace_back(nvinfer1::PluginField("mode", &mode, nvinfer1::PluginFieldType::kCHAR, 1));

fc.nbFields = f.size();
Expand All @@ -110,7 +98,7 @@ bool AdaptivePoolingConverter(
TORCHTRT_CHECK(new_layer, "Unable to create pooling (interpolation) plugin from node" << *n);

new_layer->setName(util::node_info(n).c_str());
auto layer_output = addUnpadding(ctx, n, new_layer->getOutput(0), orig_dims.nbDims, false, false);
auto layer_output = new_layer->getOutput(0);

ctx->AssociateValueAndTensor(n->outputs()[0], layer_output);
LOG_DEBUG("Output tensor shape: " << layer_output->getDimensions());
Expand Down Expand Up @@ -238,15 +226,15 @@ auto pooling_registrations TORCHTRT_UNUSED =
}})
.pattern({"aten::adaptive_avg_pool1d(Tensor self, int[1] output_size) -> (Tensor)",
[](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
return AdaptivePoolingConverter(ctx, n, args, nvinfer1::PoolingType::kAVERAGE);
return AdaptivePoolingConverter(ctx, n, args, nvinfer1::PoolingType::kAVERAGE, "adaptive_avg_pool1d");
}})
.pattern({"aten::adaptive_avg_pool2d(Tensor self, int[2] output_size) -> (Tensor)",
[](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
return AdaptivePoolingConverter(ctx, n, args, nvinfer1::PoolingType::kAVERAGE);
return AdaptivePoolingConverter(ctx, n, args, nvinfer1::PoolingType::kAVERAGE, "adaptive_avg_pool2d");
}})
.pattern({"aten::adaptive_max_pool2d(Tensor self, int[2] output_size) -> (Tensor, Tensor)",
[](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
return AdaptivePoolingConverter(ctx, n, args, nvinfer1::PoolingType::kMAX);
return AdaptivePoolingConverter(ctx, n, args, nvinfer1::PoolingType::kMAX, "adaptive_max_pool2d");
}});
} // namespace
} // namespace impl
Expand Down
2 changes: 2 additions & 0 deletions core/plugins/impl/interpolate_plugin.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -289,6 +289,8 @@ int InterpolatePlugin::enqueue(
out = at::upsample_bilinear2d(input, {size_[0], size_[1]}, align_corners_);
} else if (mode_ == "trilinear") {
out = at::upsample_trilinear3d(input, {size_[0], size_[1], size_[2]}, align_corners_);
} else if(mode_ == "adaptive_avg_pool1d"){
out = at::adaptive_avg_pool1d(input, {size_[0]});
} else if (mode_ == "adaptive_avg_pool2d") {
out = at::adaptive_avg_pool2d(input, {size_[0], size_[1]});
} else if (mode_ == "adaptive_max_pool2d") {
Expand Down
26 changes: 26 additions & 0 deletions tests/core/conversion/converters/test_pooling.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -540,6 +540,32 @@ TEST(Converters, ATenAdaptiveAvgPool1DGlobalPoolingConvertsCorrectly) {
ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0], 2e-6));
}

TEST(Converters, ATenAdaptiveAvgPool1DUsingPluginConvertsCorrectly) {
const auto graph =
R"IR(
graph(%0 : Tensor):
%2 : int = prim::Constant[value=3]()
%6 : int[] = prim::ListConstruct(%2)
%10 : Tensor = aten::adaptive_avg_pool1d(%0, %6)
return (%10))IR";

auto g = std::make_shared<torch::jit::Graph>();
torch::jit::parseIR(graph, g.get());

// PyTorch adaptive_avg_pool1d needs a 3D input or a 2D input
auto in = at::randint(-5, 5, {1, 3, 16}, at::kCUDA);

auto jit_in = at::clone(in);
auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {jit_in});

auto trt_in = at::clone(in);
params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto trt_results = torch_tensorrt::tests::util::RunGraphEngine(g, params, {trt_in});

ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0], 2e-6));
}

TEST(Converters, ATenAdaptiveMaxPool2DConvertsCorrectly) {
const auto graph = R"IR(
graph(%0 : Tensor):
Expand Down

0 comments on commit deb9f74

Please sign in to comment.