-
Notifications
You must be signed in to change notification settings - Fork 96
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
PCA of Raster data [Feature Request] #1361
Comments
Here's an example of how it could be used library(terra)
#> Warning: package 'terra' was built under R version 4.3.2
#> terra 1.7.62
rasterPCA <- function(x, nSamples = NULL, nComp = nlyr(x), spca = FALSE, maskCheck = TRUE, ...){
if(nlyr(x) <= 1) stop("Need at least two layers to calculate PCA.")
ellip <- list(...)
if(nComp > nlyr(x)) nComp <- nlyr(x)
if(!is.null(nSamples)){
trainData <- spatSample(x, size = nSamples, method="random", replace=FALSE, na.rm = TRUE)
if(nrow(trainData) < nlyr(x)) stop("nSamples too small or x contains a layer with NAs only")
model <- princomp(trainData, scores = FALSE, cor = spca)
} else {
if(maskCheck) {
totalMask <- !sum(app(x, is.na))
if(global(totalMask, sum)$sum == 0) stop("x contains either a layer with NAs only or no single pixel with valid values across all layers")
x <- mask(x, totalMask , maskvalue = 0) ## NA areas must be masked from all layers, otherwise the covariance matrix is not non-negative definite
}
covMat <- layerCor(x, fun = "cov", na.rm = TRUE)
model <- princomp(covmat = covMat[[1]], cor=spca)
model$center <- diag(covMat$mean)
model$n.obs <- global(!any(is.na(x)), sum)$sum
if(spca) {
## Calculate scale as population sd like in in princomp
S <- diag(covMat$covariance)
model$scale <- sqrt(S * (model$n.obs-1)/model$n.obs)
}
}
## Predict
out<- terra::predict(x, model = model, na.rm = TRUE, index = 1:nComp, wrArgs = ellip)
names(out) <- paste0("PC", 1:nComp)
return(structure(list(call = match.call(), model = model, map = out)))
}
#Create Data
r<- rast(nrow=40, ncol=40, nlyrs=10)
set.seed(5)
values(r)<- rnorm(ncell(r)*nlyr(r))
values(r)[sample(1:(ncell(r)*nlyr(r)), size = 1000, replace = FALSE)]<- NA #Add NA's
plot(r) PCA<- rasterPCA(r, spca = TRUE)
summary(PCA$model)
#> Importance of components:
#> Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
#> Standard deviation 1.065035 1.060924 1.0353062 1.0232500 1.0026015
#> Proportion of Variance 0.113430 0.112556 0.1071859 0.1047041 0.1005210
#> Cumulative Proportion 0.113430 0.225986 0.3331719 0.4378759 0.5383969
#> Comp.6 Comp.7 Comp.8 Comp.9 Comp.10
#> Standard deviation 0.9866337 0.98439181 0.96219138 0.95073612 0.91861112
#> Proportion of Variance 0.0973446 0.09690272 0.09258123 0.09038992 0.08438464
#> Cumulative Proportion 0.6357415 0.73264422 0.82522545 0.91561536 1.00000000
plot(PCA$map) Created on 2023-11-30 with reprex v2.0.2 |
I am not opposed but not convinced either given the simplicity of this example in
|
@rhijmans, I think this method doesn't require sampling for large rasters because it calls |
I added a |
Thanks @rhijmans, I think splitting it up into model and prediction makes sense and like the idea of adding a dedicated
library(terra)
#> Warning: package 'terra' was built under R version 4.3.2
#> terra 1.7.62
rasterPCA <- function(x, nSamples = NULL, nComp = nlyr(x), spca = FALSE, maskCheck = TRUE, ...){
if(nlyr(x) <= 1) stop("Need at least two layers to calculate PCA.")
ellip <- list(...)
if(nComp > nlyr(x)) nComp <- nlyr(x)
if(!is.null(nSamples)){
trainData <- spatSample(x, size = nSamples, method="random", replace=FALSE, na.rm = TRUE)
if(nrow(trainData) < nlyr(x)) stop("nSamples too small or x contains a layer with NAs only")
model <- princomp(trainData, scores = FALSE, cor = spca)
} else {
if(maskCheck) {
totalMask <- !sum(app(x, is.na))
if(global(totalMask, sum)$sum == 0) stop("x contains either a layer with NAs only or no single pixel with valid values across all layers")
x <- mask(x, totalMask , maskvalue = 0) ## NA areas must be masked from all layers, otherwise the covariance matrix is not non-negative definite
}
covMat <- layerCor(x, fun = "cov", na.rm = TRUE)
model <- princomp(covmat = covMat[[1]], cor=spca)
model$center <- diag(covMat$mean)
model$n.obs <- global(!any(is.na(x)), sum)$sum
if(spca) {
## Calculate scale as population sd like in in princomp
S <- diag(covMat$covariance)
model$scale <- sqrt(S * (model$n.obs-1)/model$n.obs)
}
}
## Predict
out<- terra::predict(x, model = model, na.rm = TRUE, index = 1:nComp, wrArgs = ellip)
names(out) <- paste0("PC", 1:nComp)
return(structure(list(call = match.call(), model = model, map = out)))
}
princomp_edit<- function(x, cor=FALSE, ...) {
stopifnot(nlyr(x) > 1)
xcov <- layerCor(x, fun="cov", na.rm=TRUE)
model <- princomp(covmat = xcov$covariance, cor=cor, ...)
model$center <- diag(xcov$mean)
if (cor) {
## Calculate scale as population sd like in in princomp
S <- diag(xcov$covariance)
n <- diag(xcov$n)
model$scale <- sqrt(S * (n-1) / n)
}
model
}
#Create Data
r<- rast(nrow=40, ncol=40, nlyrs=10)
set.seed(5)
values(r)<- rnorm(ncell(r)*nlyr(r))
values(r)[sample(1:(ncell(r)*nlyr(r)), size = 1000, replace = FALSE)]<- NA #Add NA's
r_df<- as.data.frame(r)
r_df<- na.omit(r_df) # If you do not omit NA's from the dataframe, you get Error in cov.wt(z) : 'x' must contain finite values only
# PCA cor=FALSE
m1<- princomp(r_df) # This is on a dataframe so it serves as a reference to the correct output
m1$n.obs
#> [1] 859
m1$sdev
#> Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8
#> 1.0826671 1.0704703 1.0429269 1.0255518 1.0028366 0.9855091 0.9820035 0.9674348
#> Comp.9 Comp.10
#> 0.9487587 0.9176803
m2<- rasterPCA(r)$model
m2$n.obs
#> [1] 859
m2$sdev
#> Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8
#> 1.0832979 1.0710939 1.0435344 1.0261493 1.0034208 0.9860832 0.9825756 0.9679984
#> Comp.9 Comp.10
#> 0.9493114 0.9182149
m3<- terra::princomp(r)
m3$n.obs
#> [1] NA
m3$sdev
#> Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8
#> 1.0745181 1.0494377 1.0409172 1.0199349 1.0037053 1.0022756 0.9830014 0.9800315
#> Comp.9 Comp.10
#> 0.9710888 0.9527138
# PCA cor=TRUE
m4<- terra::princomp(r, cor=TRUE)
m4$sdev==m3$sdev #cor= TRUE did not change result
#> Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10
#> TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
m5<- princomp_edit(r, cor=TRUE)
m5$sdev==m3$sdev #Edited version properly passes along cor argument
#> Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10
#> FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE Created on 2023-12-01 with reprex v2.0.2 |
Yes, thanks, fixed that.
The only other meaningful argument is
I do not think that is strictly necessary. Our best estimate of the covariance matrix would use all pairs of data that are not NA. We can add a note in the manual that you can do It may affect the computation of the scale (if
I put it back in. However, there is not one |
Thank you! |
@rhijmans, although |
I would prefer to use The population covariance can be computed with
I think it generally makes more sense to to treat raster data as the population and not as a sample. It could also be an option that may lead to oh so small differences for small rasters. Anyway, this is confusing stuff, and I would appreciate your guidance. |
@rhijmans, since the "scale" should be the standard deviation and the S (the diagonal of the covariance matrix) is the variance, the square root of that would be appropriate. The pairwise n's must still be used to calculate the covariance matrix so it's not really circumventing that, but we it does avoid multiplying by That being said, I think it is slightly better as you suggested to use I am unsure however why results of library(terra)
#> terra 1.7.62
cov_pop <- function(data) {
# Calculate the means of each variable
means <- colMeans(data)
# Number of observations
n_obs <- nrow(data)
# Number of variables
n_vars <- ncol(data)
# Initialize an empty covariance matrix
covariance_matrix <- matrix(0, nrow = n_vars, ncol = n_vars)
# Calculate the covariance for each pair of variables
for (i in 1:n_vars) {
for (j in 1:n_vars) {
covariance_matrix[i, j] <- sum((data[, i] - means[i]) * (data[, j] - means[j])) / n_obs
}
}
return(covariance_matrix)
}
r<- rast(nrow=40, ncol=40, nlyrs=10)
set.seed(5)
values(r)<- rnorm(ncell(r)*nlyr(r))
r_df<- as.data.frame(r)
n<- ncell(r) #No NA's in this example
cov_samp_terra<- layerCor(r, fun="cov", na.rm=TRUE, asSamle=TRUE)
cov_pop_terra<- layerCor(r, fun="cov", na.rm=TRUE, asSamle=FALSE)
cov_samp_R<- cov(r_df)
cov_pop_R<- cov_pop(r_df)
# Terra has differences on order of e-05
max((cov_samp_terra$covariance*(n-1)/n)-cov_pop_terra$covariance)
#> [1] 3.426207e-05
# R has differences on order of e-16
max((cov_samp_R*(n-1)/n)-cov_pop_R)
#> [1] 2.220446e-16 Created on 2023-12-06 with reprex v2.0.2 |
or with your approach using
|
Yes, that is the |
Oh that was dumb of me 🤦♂️🤦♂️🤦♂️. Running it again, it all looks good! Since you created the library(terra)
#> terra 1.7.62
#Create Data
r<- rast(nrow=40, ncol=40, nlyrs=10)
set.seed(5)
values(r)<- rnorm(ncell(r)*nlyr(r))
values(r)[sample(1:(ncell(r)*nlyr(r)), size = 1000, replace = FALSE)]<- NA #Add NA's
cov_samp_terra<- layerCor(r, fun="cov", na.rm=TRUE, asSample=TRUE)
cov_pop_terra<- layerCor(r, fun="cov", na.rm=TRUE, asSample=FALSE)
n_mat<- cov_samp_terra$n
n<- diag(n_mat)
max((cov_samp_terra$covariance*(n_mat-1)/n_mat) - cov_pop_terra$covariance)
#> [1] 6.938894e-18
n # n is a vector of pairwise sample sizes corresponding to the length of S
#> [1] 1497 1497 1509 1496 1493 1489 1506 1505 1507 1501
S1<- diag(cov_samp_terra$covariance)
scale1<- sqrt(S1*(n-1)/n)
S2<- diag(cov_pop_terra$covariance)
scale2<- sqrt(S2)
scale1==scale2
#> lyr.1 lyr.2 lyr.3 lyr.4 lyr.5 lyr.6 lyr.7 lyr.8 lyr.9 lyr.10
#> TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE Created on 2023-12-06 with reprex v2.0.2 |
Thanks so much for adding this! |
Thank you! I have changed argument |
@rhijmans, an added bonus is I believe this also fixed a bug in Older Versionlibrary(terra)
#> Warning: package 'terra' was built under R version 4.3.2
#> terra 1.7.62
r<- rast(nrow=40, ncol=40, nlyrs=2)
set.seed(5)
values(r[[1]])<- rnorm(ncell(r))
values(r[[2]])<- values(r[[1]])*2+rnorm(ncell(r))
cov_full<- layerCor(r, fun="cov", maxcell=Inf)
cov_half<- layerCor(r, fun="cov", maxcell=ncell(r)/2)
cov_half$covariance
#> lyr.1 lyr.2
#> lyr.1 0.541334 1.058303
#> lyr.2 1.058303 2.621351
cov_full$covariance
#> lyr.1 lyr.2
#> lyr.1 1.019472 2.029023
#> lyr.2 2.029023 5.057638
cov_half$covariance/cov_full$covariance
#> lyr.1 lyr.2
#> lyr.1 0.5309946 0.5215826
#> lyr.2 0.5215826 0.5182955
df_half<- spatSample(r, 800, method="regular")
cov(df_half)
#> lyr.1 lyr.2
#> lyr.1 1.030468 2.014555
#> lyr.2 2.014555 4.989929 Created on 2023-12-07 with reprex v2.0.2 Latest Commitlibrary(terra)
#> terra 1.7.62
r<- rast(nrow=40, ncol=40, nlyrs=2)
set.seed(5)
values(r[[1]])<- rnorm(ncell(r))
values(r[[2]])<- values(r[[1]])*2+rnorm(ncell(r))
cov_full<- layerCor(r, fun="cov", maxcell=Inf)
cov_half<- layerCor(r, fun="cov", maxcell=ncell(r)/2)
cov_half$covariance
#> lyr.1 lyr.2
#> lyr.1 1.030468 2.014555
#> lyr.2 2.014555 4.989929
cov_full$covariance
#> lyr.1 lyr.2
#> lyr.1 1.019472 2.029023
#> lyr.2 2.029023 5.057638
cov_half$covariance/cov_full$covariance
#> lyr.1 lyr.2
#> lyr.1 1.0107862 0.9928697
#> lyr.2 0.9928697 0.9866125
df_half<- spatSample(r, 800, method="regular")
cov(df_half)
#> lyr.1 lyr.2
#> lyr.1 1.030468 2.014555
#> lyr.2 2.014555 4.989929 Created on 2023-12-07 with reprex v2.0.2 |
Since "cov" and |
I did not include the It is interesting to see how few you cells you need with this (unrealistically simple) example
|
@rhijmans, that for adding this function -- I think it will be helpful for many. Do you also plan to add some updates to library(terra)
#> terra 1.7.65
f <- system.file("ex/logo.tif", package = "terra")
r <- rast(f)
r[100] <- NA
# works
pca <- princomp(r)
# fails (due to NA's)
pca2 <- prcomp(r)
#> Error in svd(x, nu = 0, nv = k): infinite or missing values in 'x' From the princomp help file (
|
@Nowosad, the point about |
If there are no NAs in SpatRaster
Otherwise you need something like
I could add a |
@rhijmans @Nowosad, it could be useful to add a |
@ailich thanks for the explanation -- I was suspecting something like this, but was unable to find any discussion on the topic. And yes -- my thinking was to make |
# version 1.7-83 ## bug fixes - `flip(direction="vertical")` failed in some cases [#1518](rspatial/terra#1518) by Ed Carnell - `zonal(as.raster=TRUE)` failed when the zonal raster was categorical [1514](rspatial/terra#1514) by Jessi L Brown - `distance<data.frame,data.frame>` and `<matrix,matrix>` ignored the unit argument. [#1545](rspatial/terra#1545) by Wencheng Lau-Medrano - NetCDF files with month time-step encode from 0-11 made R crash [#1544](rspatial/terra#1544) by Martin Holdrege - `split<SpatVector>` only worked well if the split field was of type character. [#1530](rspatial/terra#1530) by Igor Graczykowski - `gridDist` (and probably some other methods) emitted a "cannot overwrite existing file" error when processing large datasets [#1522](rspatial/terra#1522) by Clare Pearson - `terrain` did not accept multiple variables [#1561](rspatial/terra#1561) by Michael Mahoney - `rotate` was vulnerable to an integer overflow [#1562](rspatial/terra#1562) by Sacha Ruzzante - `getTileExtents` could return overlapping tiles or tiles with gaps due to floating point imprecision. [#1564](rspatial/terra#1564) by Michael Sumner ## enhancements - `as.list<SpatRasterDataset>` sets the names of the list [#1513](rspatial/terra#1513) - a SpatVectorCollection can now be subset with its names; and if made from a list it takes the names from the list. [1515](rspatial/terra#1515) by jedgroev - argument `fill_range` to plot<SpatRaster> and `plot<SpatVector>` to use the color of the extreme values of the specified range [#1553](rspatial/terra#1553) by Mike Koontz - plet<SpatRaster> can now handle rasters with a "local" (Cartesian) CRS. [#1570](rspatial/terra#1570) by Augustin Lobo. ## new - `map-region` returns the coordinates of the axes position of a map created with `plot<Spat*>` [https://github.com/rspatial/terra/issues/1517](https://github.com/rspatial/terra/issues/1517) by Daniel Schuch - `polys<leaflet>` method [#1543](rspatial/terra#1543) by Márcia Barbosa - `plot<SpatVectorCollection>` method [#1532](rspatial/terra#1532) by jedgroev - `add_mtext` to add text around the margins of a map. [#1567](rspatial/terra#1567) by Daniel Schuch # version 1.7-78 Released 2023-05-22 ## bug fixes - `writeVector` and `readVector` better handle empty geopackage layers [#1426](rspatial/terra#1426) by Andrew Gene Brown. - `writeCDF` only wrote global variables if there was more than one [#1443](rspatial/terra#1443) by Daniel Schlaepfer - `rasterize` with "by" returned odd layernames [#1435](rspatial/terra#1435) by Philippe Massicotte - `convHull`, `minCircle` and `minRect` with a zero-row SpatVector crashed R [#1445](rspatial/terra#1445) by Andrew Gene Brown - `rangeFill` with argument `circular=TRUE` did not work properly [#1460](rspatial/terra#1460) by Alice - `crs(describe = TRUE)` returned an mis-ordered extent [#1485](rspatial/terra#1485) by Dimitri Falk - `tapp` with a custom function and an index like "yearmonths" could shift time for not considering the time zone. [#1483](rspatial/terra#1483) by Finn Roberts - `plot<SpatRaster>` could fail when there were multiple values with very small differences [#1491](rspatial/terra#1491) by srfall - `as.data.frame<SpatRaster>` with "xy=TRUE" and "wide=FALSE" could fail if coordinates were very similar [#1476](rspatial/terra#1476) by Pascal Oettli - `rasterizeGeom` now returns the correct layer name [#1472](rspatial/terra#1472) by HRodenhizer - `cellSize` with "mask=TRUE" failed if the output was to be written to a temp file [#1496](rspatial/terra#1496) by Pascal Sauer - `ext<SpatVectorProxy>` did not return the full extent [#1501](rspatial/terra#1501) by erkent-carb ## enhancements - `extract` has new argument "small=TRUE" to allow for strict use of "touches=FALSE" [#1419](rspatial/terra#1419) by Floris Vanderhaeghe. - `as.list<SpatRaster>` has new argument "geom=NULL" - `rast<list>` now recognizes (x, y, z) base R "image" structures [stackoverflow] (https://stackoverflow.com/questions/77949551/rspatial-convert-a-grid-list-to-a-raster-using-terra) by Ignacio Marzan. - `inset` has new arguments "offset" and "add" [#1422](rspatial/terra#1422) by Armand-CT - `expanse<SpatRaster>` has argument `usenames` [#1446](rspatial/terra#1446) by Bappa Das - the default color palette is now `terra::map.pal("viridis")` instead of `terrain.colors`. The default can be changes with `options(terra.pal=...)` [#1474](rspatial/terra#1474) by Derek Friend - `as.list<SpatRasterDataset>` now returns a named list. [#1513](rspatial/terra#1513) by Eric R. Scott ## new - `bestMatch<SpatRaster>` method - argument "pairs=TRUE" to `cells` [https://github.com/rspatial/terra/issues/1487](https://github.com/rspatial/terra/issues/1487) by Floris Vanderhaeghe - `add_grid` to add a grid to a map # version 1.7-71 Released 2023-01-31 ## bug fixes - k_means did not work if there were NAs [#1314](rspatial/terra#1314) by Jakub Nowosad - `layerCor` with a custom function did not work anymore [#1387](rspatial/terra#1387) by Jakub Nowosad - `plet` broke when using "panel=TRUE" [#1384](rspatial/terra#1384) by Elise Hellwig - using /vis3/ to open a SpatRaster did not work [#1382](rspatial/terra#1382) by Mike Koontz - `plot<SpatRaster>(add=TRUE)` sampled the raster data without considering the extent of the map. [#1394](rspatial/terra#1394) by Márcia Barbosa - `plot<SpatRaster>(add=TRUE)` now only considers the first layer of a multi-layer SpatRaster [1395](rspatial/terra#1395) by Márcia Barbosa - `set.cats` failed with a tibble was used instead of a data.frame [#1406](rspatial/terra#1406) by Mike Koontz - `polys` argument "alpha" was ignored if a single color was used. [#1413](rspatial/terra#1413) by Derek Friend - `query` ignore the "vars" argument if all rows were selected. [#1398](rspatial/terra#1398) by erkent-carb. - `spatSample` ignored "replace=TRUE" with random sampling, na.rm=TRUE, and a sample size larger than the non NA cells. [#1411](rspatial/terra#1411) by Babak Naimi - `spatSample` sometimes returned fewer values than requested and available for lonlat rasters. [#1396](rspatial/terra#1396) by Márcia Barbosa. ## enhancements - `vect<character>` now has argument "opts" for GDAL open options, e.g. to declare a file encoding. [#1389](rspatial/terra#1389) by Mats Blomqvist - `plot(plg=list(tic=""))` now allows choosing alternative continuous legend tic-mark styles ("in", "out", "through" or "none") - `makeTiles` has new argument "buffer" [#1408](rspatial/terra#1408) by Joy Flowers. ## new - `prcomp<SpatRaster>` method [#1361](rspatial/terra#1361 (comment)) by Jakub Nowosad - `add_box` to add a box around the map. The box is drawn where the axes are, not around the plotting region. - `getTileExtents` provides the extents of tiles. These may be used in parallelization. See [#1391](https://github.com/rspa tial/terra/issues/1391) by Alex Ilich. # version 1.7-65 Released 2023-12-15 ## bug fixes - `flip` with argument `direction="vertical"` filed in some cases with large rasters processed in chunks [0b714b0](rspatial/terra@0b714b0) by Dulci on [stackoveflow]( https://stackoverflow.com/questions/77304534/rspatial-terraflip-error-when-flipping-a-multi-layer-spatrast-object) - SpatRaster now correctly handles `NA & FALSE` and `NA | TRUE` [#1316](rspatial/terra#1316) by John Baums - `set.names` wasn't working properly for SpatRasterDataset or SpatRasterCollection [#1333](rspatial/terra#1333) by Derek Friend - `extract` with argument "layer" not NULL shifted the layers [#1332](rspatial/terra#1332) by Ewan Wakefield - `terraOptions` did not capture "memmin" on -[stackoverflow](https://stackoverflow.com/questions/77552234/controlling-chunk -size-in-terra) by dww - `rasterize` with points and a built-in function could crash if no field was used [#1369](rspatial/terra#1369) by anjelinejeline ## enhancements - `mosaic` can now use `fun="modal"` - `rast<matrix> and rast<data.frame>` now have option 'type="xylz" [#1318](rspatial/terra#1318) by Agustin Lobo - `extract<SpatRaster,SpatVector>` can now use multiple summarizing functions [#1335](rspatial/terra#1335) by Derek Friend - `disagg` and `focal` have more optimistic memory requirement estimation [#1334](rspatial/terra#1334) by Mikko Kuronen ## new - `k_means<SpatRaster>` method [#1314](rspatial/terra#1314) by Agustin Lobo - `princomp<SpatRaster>` method [#1361](rspatial/terra#1361) by Alex Ilich - `has.time<SpatRaster>` method - new argument "raw=FALSE" to `rast`, `sds`, and `sprc` to allow ignoring scale and offset [1354](rspatial/terra#1354) by Insang Song # version 1.7-55 Released 2023-10-14 ## bug fixes - `mosaic` ignored the filename argument if the SpatRasterCollection only had a single SpatRaster [#1267](rspatial/terra#1267) by Michael Mahoney - Attempting to use `extract` with a raster file that had been deleted crashed R. [#1268](rspatial/terra#1268) by Derek Friend - `split<SpatVector,SpatVector>` did not work well in all cases. [#1256](rspatial/terra#1256) by Derek Corcoran Barrios - `intersect` with two SpatVectors crashed R if there was a date/time variable [#1273]( rspatial/terra#1273) by Dave Dixon - "values=FALSE" was ignored by `spatSample<SpatRaster>(method="weights")` [#1275](rspatial/terra#1275) by François Rousseu - `coltab<-` again works with a list as value [#1280](rspatial/terra#1280) by Diego Hernangómez - `stretch` with histogram equalization was not memory-safe [#1305](rspatial/terra#1305) by Evan Hersh - `plot` now resets the "mar" parameter [#1297](rspatial/terra#1297) by Márcia Barbosa - `plotRGB` ignored the "smooth" argument [#1307](rspatial/terra#1307) by Timothée Giraud ## enhancements - argument "gdal" in `project` was renamed to "use_gdal" [#1269](rspatial/terra#1269) by Stuart Brown. - SpatVector attributes can now be stored as an ordered factor [#1277](rspatial/terra#1277) by Ben Notkin - `plot<SpatVector>` now uses an "interval" legend when breaks are supplied [#1303](rspatial/terra#1303) by Gonzalo Rizzo - `crop<SpatRaster>` now keeps more metadata, including variable names [#1302](rspatial/terra#1302) by rhgof - `extract(fun="table")` now returns an easier to use data.frame [#1294](rspatial/terra#1294) by Fernando Aramburu. ## new - `metags<-` and `metags` to set arbitrary SpatRaster/file level metadata [#1304](https://github.com/rspatial/terra/issues/ 1304) by Francesco Chianucci # version 1.7-46 Released 2023-09-06 ## bug fixes - `plot<SpatVector>` used the wrong main label in some cases [#1210](rspatial/terra#1210) by Márcia Barbosa - `plotRGB` failed with an "ext=" argument [#1228](rspatial/terra#1228) by Dave Edge - `rast<array>` failed badly when the array had less than three dimensions. [#1254](rspatial/terra#1254) by andreimirt. - `all.equal` for a SpatRaster with multiple layers [#1236](rspatial/terra#1236) by Sarah Endicot t - `zonal(wide=FALSE)` could give wrong results if the zonal SpatRaster had "layer" as layername. [#1251](rspatial/terra#1251) by Jeff Hanson - `panel` now support argument "range" [#141](rspatial/terra#1241) by Jakub Nowosad - `rasterize` with `by=` returned wrong layernames if the by field was not sorted [#1266](rspatial/terra#1266) by Sebastian Dunnett - `mosaic` with multiple layers was not correct [#1262](rspatial/terra#1262) by Jean-Romain ## enhancements - `wrap<SpatRaster>` now stores color tables [#1215](rspatial/terra#1215) by Patrick Brown - `global` now has a "maxcell" argument [#1213](rspatial/terra#1213) by Alex Ilich - `layerCor` with fun='pearson' now returns output with the layer names [#1206](rspatial/terra#1206) - `vrt` now has argument "set_names" [#1244](rspatial/terra#1244) by sam-a-levy - `vrt` now has argument "return_filename" [#1258](rspatial/terra#1258) by Krzysztof Dyba - `project<SpatRaster>` has new argument "by_util" exposing the GDAL warp utility [#1222](rspatial/terra#1222) by Michael Sumner. ## new - `compareGeom` for list and SpatRasterCollection [#1207](rspatial/terra#1207) by Sarah Endicott - `is.rotated<SpatRaster>` method [#1229](rspatial/terra#1229) by Andy Lyons - `forceCCW<SpatVector>` method to force counter-clockwise orientation of polygons [#1249](rspatial/terra#1249) by srfall. - `vrt_tiles` returns the filenames of the tiles in a vrt file [#1261](rspatial/terra#1261) by Derek Friend - `extractAlong` to extract raster cell values for a line that are ordered along the line. [#1257](rspatial/terra#1257) by adamkc.
I used to use
RSToolbox
for conducting PCA's on raster data, but it relies on theraster
package and is no longer actively maintained (I actually can't get it to install anymore). Since PCA is a common procedure it might be nice to have directly interra
like how kmeans was recently added. I've taken the code from their function and converted it toterra
code and it appears to work with the development version.The text was updated successfully, but these errors were encountered: