Skip to content

A collection of stand-alone Python machine learning recipes

License

Notifications You must be signed in to change notification settings

rougier/ML-Recipes

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

60 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Machine Learning Recipes

This is a collection of stand-alone Python examples of machine learning algorithms. Run a specific recipe to see usage and result. Feel free to contribute an example (recipe should be reasonably small, including usage).

  • Epsilon greedy (recipes/MAB/greedy.py)

    Sutton, Richard S., Barto, Andrew G. "Reinforcement Learning: An Introduction", MIT Press, Cambridge, MA (1998).

  • Softmax (recipes/MAB/softmax.py)

    Luce, R. Duncan. (1963). "Detection and recognition". In Luce, R. Duncan, Bush, Robert. R. & Galanter, Eugene (Eds.), "Handbook of mathematical psychology" (Vol. 1), New York: Wiley.

  • Thompson sampling (recipes/MAB/thompson.py)

    Thompson, William R. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika, 25(3–4):285–294, 1933. DOI: 10.2307/2332286

  • Upper Confidence Bound (recipes/MAB/ucb.py)

    Lai, T.L and Robbins, Herbert, "Asymptotically efficient adaptive allocation rules", Advances in Applied Mathematics 6:1, (1985) DOI: 10.1016/0196-8858(85)90002-8

  • Adaptive Resonance Theory (recipes/ANN/art.py)

    Grossberg, Stephen (1987). Competitive learning: From interactive activation to adaptive resonance, Cognitive Science, 11, 23-63.

  • Echo State Network (recipes/ANN/esn.py)

    Jaeger, Herbert (2001) The "echo state" approach to analysing and training recurrent neural networks. GMD Report 148, GMD - German National Research Institute for Computer Science.

  • Simple Recurrent Network (recipes/ANN/srn.py)

    Elman, Jeffrey L. (1990). Finding structure in time. Cognitive Science, 14:179–211.

  • Long Short Term Memory (nicodjimenez/lstm)

    Hochreiter, Sepp and Schmidhuber, Jürgen (1997) Long Short-Term Memory, Neural Computation Vol. 9, 1735-1780

  • Multi-Layer Perceptron (recipes/ANN/mlp.py)

    Rumelhart, David E., Hinton, Geoffrey E. and Williams, Ronald J. "Learning Internal Representations by Error Propagation". Rumelhart, David E., McClelland, James L., and the PDP research group. (editors), Parallel distributed processing: Explorations in the microstructure of cognition, Volume 1: Foundation. MIT Press, 1986.

  • Perceptron (recipes/ANN/perceptron.py)

    Rosenblatt, Frank (1958), "The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain", Cornell Aeronautical Laboratory, Psychological Review, v65, No. 6, pp. 386–408. DOI:10.1037/h0042519

  • Kernel perceptron (recipes/ANN/kernel-perceptron.py)

    Aizerman, M. A., Braverman, E. A. and Rozonoer, L.. " Theoretical foundations of the potential function method in pattern recognition learning.." Paper presented at the meeting of the Automation and Remote Control,, 1964.

  • Voted Perceptron (recipes/ANN/voted-perceptron.py)

    Y. Freund, R. E. Schapire. "Large margin classification using the perceptron algorithm". In: 11th Annual Conference on Computational Learning Theory, New York, NY, 209-217, 1998. DOI:10.1023/A:1007662407062

  • Self Organizing Map (recipes/ANN/som.py)

    Kohonen, Teuvo. Self-Organization and Associative Memory. Springer, Berlin, 1984.