Skip to content

Commit

Permalink
Fix Javadoc errors (tensorflow#152)
Browse files Browse the repository at this point in the history
  • Loading branch information
karllessard authored and rnett committed Dec 28, 2020
1 parent 8a58b9c commit 190df99
Show file tree
Hide file tree
Showing 5 changed files with 27 additions and 15 deletions.
12 changes: 12 additions & 0 deletions pom.xml
Original file line number Diff line number Diff line change
Expand Up @@ -119,6 +119,18 @@
</dependencyManagement>

<profiles>
<!--
Developer profile
Enable javadoc generation so the developer is aware of any mistake that might prevent
ultimately the deployment of the artifacts
-->
<profile>
<id>dev</id>
<properties>
<maven.javadoc.skip>false</maven.javadoc.skip>
</properties>
</profile>

<!--
Deploying profile
Build the Javadoc when deploying
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -155,8 +155,8 @@ public CategoricalCrossentropy(Ops tf, String name, boolean fromLogits) {
* @param tf the TensorFlow Ops
* @param fromLogits Whether to interpret predictions as a tensor of logit values
* @param labelSmoothing Float in <code>[0, 1]</code>. When <code>&gt; 0</code>, label values are smoothed, meaning the
* confidence on label values are relaxed. e.g. <code>labelSmoothing=0.2<code> means that we will use a
* value of </code>0.1<code> for label </code>0<code> and </code>0.9<code> for label </code>1<code>
* confidence on label values are relaxed. e.g. <code>labelSmoothing=0.2</code> means that we will use a
* value of <code>0.1</code> for label <code>0</code> and <code>0.9</code> for label <code>1</code>
*/
public CategoricalCrossentropy(Ops tf, boolean fromLogits, float labelSmoothing) {
this(tf, null, fromLogits, labelSmoothing, REDUCTION_DEFAULT, DEFAULT_AXIS);
Expand All @@ -170,8 +170,8 @@ public CategoricalCrossentropy(Ops tf, boolean fromLogits, float labelSmoothing)
* @param name the name of this loss
* @param fromLogits Whether to interpret predictions as a tensor of logit values
* @param labelSmoothing Float in <code>[0, 1]</code>. When <code>&gt; 0</code>, label values are smoothed, meaning the
* confidence on label values are relaxed. e.g. <code>labelSmoothing=0.2<code> means that we will use a
* value of </code>0.1<code> for label </code>0<code> and </code>0.9<code> for label </code>1<code>
* confidence on label values are relaxed. e.g. <code>labelSmoothing=0.2</code> means that we will use a
* value of <code>0.1</code> for label <code>0</code> and <code>0.9</code> for label <code>1</code>
*/
public CategoricalCrossentropy(Ops tf, String name, boolean fromLogits, float labelSmoothing) {
this(tf, name, fromLogits, labelSmoothing, REDUCTION_DEFAULT, DEFAULT_AXIS);
Expand All @@ -184,8 +184,8 @@ public CategoricalCrossentropy(Ops tf, String name, boolean fromLogits, float la
* @param tf the TensorFlow Ops
* @param fromLogits Whether to interpret predictions as a tensor of logit values
* @param labelSmoothing Float in <code>[0, 1]</code>. When <code>&gt; 0</code>, label values are smoothed, meaning the
* confidence on label values are relaxed. e.g. <code>x=0.2<code> means that we will use a
* value of </code>0.1<code> for label </code>0<code> and </code>0.9<code> for label </code>1<code>
* confidence on label values are relaxed. e.g. <code>x=0.2</code> means that we will use a
* value of <code>0.1</code> for label <code>0</code> and <code>0.9</code> for label <code>1</code>
* @param reduction Type of Reduction to apply to loss.
*/
public CategoricalCrossentropy(
Expand All @@ -200,8 +200,8 @@ public CategoricalCrossentropy(
* @param name the name of this loss
* @param fromLogits Whether to interpret predictions as a tensor of logit values
* @param labelSmoothing Float in <code>[0, 1]</code>. When <code>&gt; 0</code>, label values are smoothed, meaning the
* confidence on label values are relaxed. e.g. <code>labelSmoothing=0.2<code> means that we will use a
* value of </code>0.1<code> for label </code>0<code> and </code>0.9<code> for label </code>1<code>
* confidence on label values are relaxed. e.g. <code>labelSmoothing=0.2</code> means that we will use a
* value of <code>0.1</code> for label <code>0</code> and <code>0.9</code> for label <code>1</code>
* @param reduction Type of Reduction to apply to loss.
* @param axis The channels axis. <code>axis=-1</code> corresponds to data format `Channels Last'
* and <code>axis=1</code> corresponds to data format 'Channels First'.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@
*
* <p><code>loss = maximum(1 - labels * predictions, 0)</code></p>.
*
* <p><code>labels/code> values are expected to be -1 or 1.
* <p><code>labels</code> values are expected to be -1 or 1.
* If binary (0 or 1) labels are provided, they will be converted to -1 or 1.</p>
*
* <p>Standalone usage:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -218,8 +218,8 @@ private static <T extends TNumber> Operand<T> binaryCrossentropyHelper(
* @param predictions the predictions
* @param fromLogits Whether to interpret predictions as a tensor of logit values
* @param labelSmoothing Float in <code>[0, 1]</code>. When <code>&gt; 0</code>, label values are smoothed, meaning the
* confidence on label values are relaxed. e.g. <code>labelSmoothing=0.2<code> means that we will use a
* value of </code>0.1<code> for label </code>0<code> and </code>0.9<code> for label </code>1<code>
* confidence on label values are relaxed. e.g. <code>labelSmoothing=0.2</code> means that we will use a
* value of <code>0.1</code> for label <code>0</code> and <code>0.9</code> for label <code>1</code>
* @param axis the
* @param <T> the data type of the predictions and labels
* @return the categorical crossentropy loss.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -43,10 +43,10 @@ public class LossesHelper {
*
* <ol type="1">
* <li>Squeezes last dim of <code>predictions</code> or <code>labels</code> if their rank
* differs by 1 (using {@link #removeSqueezableDimensions}).
* differs by 1 (using {@link #removeSqueezableDimensions}).</li>
* <li>Squeezes or expands last dim of <code>sampleWeight</code> if its rank differs by 1 from
* the new rank of <code>predictions</code>. If <code>sampleWeight</code> is scalar, it is
* kept scalar./li>
* kept scalar.</li>
* </ol>
*
* @param tf the TensorFlow Ops
Expand Down Expand Up @@ -80,7 +80,7 @@ public static <T extends TNumber> LossTuple<T> squeezeOrExpandDimensions(
* </code>.
* @param sampleWeights Optional sample weight(s) <code>Operand</code> whose dimensions match<code>
* prediction</code>.
* @return LossTuple of <code>prediction<s/code>, <code>labels</code> and <code>sampleWeight</code>.
* @return LossTuple of <code>predictions</code>, <code>labels</code> and <code>sampleWeight</code>.
* Each of them possibly has the last dimension squeezed, <code>sampleWeight</code> could be
* extended by one dimension. If <code>sampleWeight</code> is null, only the possibly shape modified <code>predictions</code> and <code>labels</code> are
* returned.
Expand Down Expand Up @@ -290,7 +290,7 @@ private static <T extends TNumber> Operand<T> reduceWeightedLoss(
* Computes a safe mean of the losses.
*
* @param tf the TensorFlow Ops
* @param losses </code>Operand</code> whose elements contain individual loss measurements.
* @param losses <code>Operand</code> whose elements contain individual loss measurements.
* @param numElements The number of measurable elements in <code>losses</code>.
* @param <T> the data type of the losses
* @return A scalar representing the mean of <code>losses</code>. If <code>numElements</code> is
Expand Down

0 comments on commit 190df99

Please sign in to comment.