ndx-pose is a standardized format for storing pose estimation data in NWB, such as from DeepLabCut and SLEAP. Please post an issue or PR to suggest or add support for another pose estimation tool.
This extension consists of several new neurodata types:
Skeleton
which stores the relationship between the body parts (nodes and edges).Skeletons
which is a container that stores multipleSkeleton
objects.PoseEstimationSeries
which stores the estimated positions (x, y) or (x, y, z) of a body part over time as well as the confidence/likelihood of the estimated positions.PoseEstimation
which stores the estimated position data (PoseEstimationSeries
) for multiple body parts, computed from the same video(s) with the same tool/algorithm.SkeletonInstance
which stores the estimated positions and visibility of the body parts for a single frame.TrainingFrame
which stores the ground truth data for a single frame. It containsSkeletonInstance
objects and references a frame of a source video (ImageSeries
). The source videos can be stored internally as data arrays or externally as files referenced by relative file path.TrainingFrames
which is a container that stores multipleTrainingFrame
objects.SourceVideos
which is a container that stores multipleImageSeries
objects representing source videos used in training.PoseTraining
which is a container thatstores the ground truth data (TrainingFrames
) and source videos (SourceVideos
) used to train the pose estimation model.
It is recommended to place the Skeletons
, PoseEstimation
, and PoseTraining
objects in an NWB processing module
named "behavior", as shown below.
pip install ndx-pose
NWB files are designed to store data from a single subject and have only one root-level Subject
object.
As a result, ndx-pose was designed to store pose estimates from a single subject.
Pose estimates data from different subjects should be stored in separate NWB files.
Training images can involve multiple skeletons, however. These training images may be the same across subjects, and therefore the same across NWB files. These training images should be duplicated between files, until multi-subject support is added to NWB and ndx-pose. See #3
Utilities to convert DLC output to/from NWB: https://github.com/DeepLabCut/DLC2NWB
- For multi-animal projects, one NWB file is created per animal. The NWB file contains only a
PoseEstimation
object under/processing/behavior
. ThatPoseEstimation
object containsPoseEstimationSeries
objects, one for each body part, and general metadata about the pose estimation process, skeleton, and videos. ThePoseEstimationSeries
objects contain the estimated positions for that body part for a particular animal.
Utilities to convert SLEAP pose tracking data to/from NWB: https://github.com/talmolab/sleap-io
- Used by SLEAP (sleap.io.dataset.Labels.export_nwb)
- See also https://github.com/talmolab/sleap/blob/develop/sleap/io/format/ndx_pose.py
Keypoint MoSeq: https://github.com/dattalab/keypoint-moseq
- Supports read of
PoseEstimation
objects from NWB files.
- NeuroConv supports converting data from DeepLabCut (using
dlc2nwb
described above), SLEAP (usingsleap_io
described above), FicTrac, and LightningPose to NWB. It supports appending pose estimation data to an existing NWB file.
Ethome: Tools for machine learning of animal behavior: https://github.com/benlansdell/ethome
- Supports read of
PoseEstimation
objects from NWB files.
Related work:
Several NWB datasets use ndx-pose 0.1.1:
- A detailed behavioral, videographic, and neural dataset on object recognition in mice
- IBL Brain Wide Map
Several open-source conversion scripts on GitHub also use ndx-pose.
%%{init: {'theme': 'base', 'themeVariables': {'primaryColor': '#ffffff', "primaryBorderColor': '#144E73', 'lineColor': '#D96F32'}}}%%
classDiagram
direction LR
namespace ndx-pose {
class PoseEstimationSeries{
<<SpatialSeries>>
name : str
description : str
timestamps : array[float; dims [frame]]
data : array[float; dims [frame, [x, y]] or [frame, [x, y, z]]]
confidence : array[float; dims [frame]]
reference_frame: str
}
class PoseEstimation {
<<NWBDataInterface>>
name : str
description : str, optional
original_videos : array[str; dims [file]], optional
labeled_videos : array[str; dims [file]], optional
dimensions : array[uint, dims [file, [width, height]]], optional
scorer : str, optional
scorer_software : str, optional
scorer_software__version : str, optional
PoseEstimationSeries
Skeleton, link
Device, link
}
class Skeletons {
<<NWBDataInterface>>
Skeleton
}
class Skeleton {
<<NWBDataInterface>>
name : str
nodes : array[str; dims [body part]]
edges : array[uint; dims [edge, [node, node]]]
}
}
class Device
PoseEstimation --o PoseEstimationSeries : contains 0 or more
PoseEstimation --> Skeleton : links to
PoseEstimation --> Device : links to
Skeletons --o Skeleton : contains 0 or more
%%{init: {'theme': 'base', 'themeVariables': {'primaryColor': '#ffffff', "primaryBorderColor': '#144E73', 'lineColor': '#D96F32'}}}%%
classDiagram
direction LR
namespace ndx-pose {
class PoseEstimationSeries{
<<SpatialSeries>>
name : str
description : str
timestamps : array[float; dims [frame]]
data : array[float; dims [frame, [x, y]] or [frame, [x, y, z]]]
confidence : array[float; dims [frame]]
reference_frame: str
}
class PoseEstimation {
<<NWBDataInterface>>
name : str
description : str, optional
original_videos : array[str; dims [file]], optional
labeled_videos : array[str; dims [file]], optional
dimensions : array[uint, dims [file, [width, height]]], optional
scorer : str, optional
scorer_software : str, optional
scorer_software__version : str, optional
PoseEstimationSeries
Skeleton, link
Device, link
}
class Skeleton {
<<NWBDataInterface>>
name : str
nodes : array[str; dims [body part]]
edges : array[uint; dims [edge, [node, node]]]
}
class TrainingFrame {
<<NWBDataInterface>>
name : str
annotator : str, optional
source_video_frame_index : uint, optional
skeleton_instances : SkeletonInstances
source_video : ImageSeries, link, optional
source_frame : Image, link, optional
}
class SkeletonInstance {
<<NWBDataInterface>>
id: uint, optional
node_locations : array[float; dims [body part, [x, y]] or [body part, [x, y, z]]]
node_visibility : array[bool; dims [body part]], optional
Skeleton, link
}
class TrainingFrames {
<<NWBDataInterface>>
TrainingFrame
}
class SkeletonInstances {
<<NWBDataInterface>>
SkeletonInstance
}
class SourceVideos {
<<NWBDataInterface>>
ImageSeries
}
class Skeletons {
<<NWBDataInterface>>
Skeleton
}
class PoseTraining {
<<NWBDataInterface>>>
training_frames : TrainingFrames, optional
source_videos : SourceVideos, optional
}
}
class Device
class ImageSeries
class Image
PoseEstimation --o PoseEstimationSeries : contains 0 or more
PoseEstimation --> Skeleton : links to
PoseEstimation --> Device : links to
PoseTraining --o TrainingFrames : contains
PoseTraining --o SourceVideos : contains
TrainingFrames --o TrainingFrame : contains 0 or more
TrainingFrame --o SkeletonInstances : contains
TrainingFrame --> ImageSeries : links to
TrainingFrame --> Image : links to
SkeletonInstances --o SkeletonInstance : contains 0 or more
SkeletonInstance --o Skeleton : links to
SourceVideos --o ImageSeries : contains 0 or more
Skeletons --o Skeleton : contains 0 or more
- @rly
- @bendichter
- @AlexEMG
- @roomrys
- @CBroz1
- @h-mayorquin
- @talmo
- @eberrigan
This extension was created using ndx-template.