Skip to content

Attribution methods that explain image classification models, implemented in PyTorch, and support batch input and GPU.

Notifications You must be signed in to change notification settings

riverback/pytorch_attribution

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

58 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Attritbuion Methods for Image Classification Models

We only consider plug-and-play methods that do not have special requirements on the model architecture and do not need to add modules with learnable parameters or additional training. At the same time, we hope to facilitate weakly-supervised localization and segmentation using attribution results, as well as incorporating them as part of model training (e.g., use the attribution results as additional supervision information). Therefore, all methods use PyTorch tensors for calculations as much as possible, support batch input, and GPU usage.

Since we mainly aim to use attribution results to assist weakly supervised training, localization, segmentation, model distillation and etc., we did not include explainability methods for black-box models like RISE and HISC here.

Gradients Visualization

CNN models: some results of resnet50 from timm, example code at ./gradientss_visualization_examples.py.

Vision/Swin Transformers: gradients visualization methods can be directly used for transformers, the model used here is vit_tiny_patch16_224.augreg_in21k_ft_in1k from timm, example code at ./gradients_visualization_for_transformers_examples.py.

Class Activation Map (CAM) Visualization

resnet50, the target layer is layer3, example code at ./cam_visualization_examples.py

CAM Visualization for ViT and Swin Transformer

use attribution.utils.get_reshape_transform when creating the attribution model, example code at ./cam_visualization_for_transformers_examples.py. The target layer used for ViT here is blocks.11.norm1 and that for Swin Transformer is norm.

Currently, some methods are not supported for transformers, such as Ablation-CAM, and the visualization effect is not as good as CNN models since many methods are designed with the concept of feature maps. We will try to add visualization methods that are designed for transformers in the future.

Combine Gradients and CAM Visualization

similar to Guided Grad-CAM, any method in the gradient visualization can be combined with CAM visualization, example code at ./combine_cam_and_gradients_visualization_examples.py

Block-Box Perturbation-based Attribution Visualization

example code at ./perturbation_based_attribution_visualization_examples.py

Quick Start

from matplotlib import pyplot as plt
from PIL import Image
import requests
import timm
from timm.data import resolve_model_data_config
from timm.data.transforms_factory import create_transform
import torch

from attribution import BlurIG, GradCAM, CombinedWrapper
from attribution.utils import normalize_saliency, visualize_single_saliency

# Load imagenet labels
IMAGENET_1k_URL = 'https://storage.googleapis.com/bit_models/ilsvrc2012_wordnet_lemmas.txt'
IMAGENET_1k_LABELS = requests.get(IMAGENET_1k_URL).text.strip().split('\n')

# Load model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = timm.create_model('resnet50', pretrained=True)
model = model.to(device)
model.eval()
config = resolve_model_data_config(model, None)
transform = create_transform(**config)

# Load image
dog = Image.open('examples/dog.png').convert('RGB')
dog_tensor = transform(dog).unsqueeze(0)
H, W = dog_tensor.shape[-2:]
img = transform(dog).unsqueeze(0)

# We support batch input
img = torch.cat([img, img])
img = img.to(device)
output = model(img)
target_index = torch.argmax(output, dim=1).cpu()
print('Predicted:', IMAGENET_1k_LABELS[target_index[0].item()])

# Gradients visualization
blur_ig_kwargs = {'steps': 100, 
                  'batch_size': 4, 
                  'max_sigma': 50, 
                  'grad_step': 0.01, 
                  'sqrt': False}
blur_ig_net = BlurIG(model)
blur_ig = normalize_saliency(blur_ig_net.get_mask(img, target_index, **blur_ig_kwargs))

# CAM visualization
gradcam_net = GradCAM(model)
gradcam = normalize_saliency(gradcam_net.get_mask(img, target_index, target_layer='layer3'))

# Combine Gradients and CAM visualization
combined = CombinedWrapper(model, BlurIG, GradCAM)
combined_saliency = normalize_saliency(
    combined.get_mask(img, target_index, target_layer='layer3', **blur_ig_kwargs))

# Visualize
plt.figure(figsize=(16, 5))
plt.subplot(1, 4, 1)
plt.imshow(dog)
plt.title('Input Image')
plt.axis('off')
plt.subplot(1, 4, 2)
visualize_single_saliency(blur_ig[0].unsqueeze(0))
plt.title('Blur IG')
plt.subplot(1, 4, 3)
visualize_single_saliency(gradcam[0].unsqueeze(0))
plt.title('GradCAM')
plt.subplot(1, 4, 4)
visualize_single_saliency(combined_saliency[0].unsqueeze(0))
plt.title('Combined')
plt.tight_layout()
plt.savefig('examples/quick_start.png', bbox_inches='tight', pad_inches=0.5)

TODO:

This is still an ongoing work to implement various attribution methods for image classification models in PyTorch using a unified framework.

  • Unify gradient visualization API.
  • Implement CAM visualization for CNN models based on known target_layer names.
  • Implement CAM for ViT ,Swin Transformer and etc.
  • Implement keep positive/negative mask, keep/remove absolute mask metrics. For details, please refer to Fast Axiomatic Attribution for Neural Networks.
  • Add LIFT-CAM (ICCV2021), IIA (ICCV2023), Dix (CIKM) and Six (ICDM).
  • Unify all APIs.
  • Documentation.

Acknowledgements

This project is inspired by jacobgil/pytorch-grad-cam, PAIR-code/saliency and hummat/saliency. Thanks for their wonderful work.

About

Attribution methods that explain image classification models, implemented in PyTorch, and support batch input and GPU.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages