Skip to content

Commit

Permalink
REGR: groupby.size with axis=1 doesn't return a Series (pandas-dev#48760
Browse files Browse the repository at this point in the history
)

* REGR: groupby.size with axis=1 doesn't return a Series

* Remove code block
  • Loading branch information
rhshadrach authored Sep 26, 2022
1 parent 71c94c3 commit 3622f15
Show file tree
Hide file tree
Showing 4 changed files with 11 additions and 19 deletions.
1 change: 1 addition & 0 deletions doc/source/whatsnew/v1.5.1.rst
Original file line number Diff line number Diff line change
Expand Up @@ -76,6 +76,7 @@ Fixed regressions
- Fixed regression in :meth:`DataFrame.plot` ignoring invalid ``colormap`` for ``kind="scatter"`` (:issue:`48726`)
- Fixed performance regression in :func:`factorize` when ``na_sentinel`` is not ``None`` and ``sort=False`` (:issue:`48620`)
- Fixed regression causing an ``AttributeError`` during warning emitted if the provided table name in :meth:`DataFrame.to_sql` and the table name actually used in the database do not match (:issue:`48733`)
- Fixed :meth:`.DataFrameGroupBy.size` not returning a Series when ``axis=1`` (:issue:`48738`)

.. ---------------------------------------------------------------------------
Expand Down
13 changes: 4 additions & 9 deletions pandas/core/groupby/groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -1865,11 +1865,13 @@ def _wrap_transform_fast_result(self, result: NDFrameT) -> NDFrameT:
out = algorithms.take_nd(result._values, ids)
output = obj._constructor(out, index=obj.index, name=obj.name)
else:
# `.size()` gives Series output on DataFrame input, need axis 0
axis = 0 if result.ndim == 1 else self.axis
# GH#46209
# Don't convert indices: negative indices need to give rise
# to null values in the result
output = result._take(ids, axis=self.axis, convert_indices=False)
output = output.set_axis(obj._get_axis(self.axis), axis=self.axis)
output = result._take(ids, axis=axis, convert_indices=False)
output = output.set_axis(obj._get_axis(self.axis), axis=axis)
return output

# -----------------------------------------------------------------
Expand Down Expand Up @@ -2393,13 +2395,6 @@ def size(self) -> DataFrame | Series:
"""
result = self.grouper.size()

if self.axis == 1:
return DataFrame(
data=np.tile(result.values, (self.obj.shape[0], 1)),
columns=result.index,
index=self.obj.index,
)

# GH28330 preserve subclassed Series/DataFrames through calls
if isinstance(self.obj, Series):
result = self._obj_1d_constructor(result, name=self.obj.name)
Expand Down
6 changes: 3 additions & 3 deletions pandas/tests/groupby/test_size.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,12 +33,12 @@ def test_size_axis_1(df, axis_1, by, sort, dropna):
counts = {key: sum(value == key for value in by) for key in dict.fromkeys(by)}
if dropna:
counts = {key: value for key, value in counts.items() if key is not None}
expected = DataFrame(counts, index=df.index)
expected = Series(counts)
if sort:
expected = expected.sort_index(axis=1)
expected = expected.sort_index()
grouped = df.groupby(by=by, axis=axis_1, sort=sort, dropna=dropna)
result = grouped.size()
tm.assert_frame_equal(result, expected)
tm.assert_series_equal(result, expected)


@pytest.mark.parametrize("by", ["A", "B", ["A", "B"]])
Expand Down
10 changes: 3 additions & 7 deletions pandas/tests/groupby/transform/test_transform.py
Original file line number Diff line number Diff line change
Expand Up @@ -213,13 +213,9 @@ def test_transform_axis_1_reducer(request, reduction_func):
df = DataFrame({"a": [1, 2], "b": [3, 4], "c": [5, 6]}, index=["x", "y"])
with tm.assert_produces_warning(warn, match=msg):
result = df.groupby([0, 0, 1], axis=1).transform(reduction_func)
if reduction_func == "size":
# size doesn't behave in the same manner; hardcode expected result
expected = DataFrame(2 * [[2, 2, 1]], index=df.index, columns=df.columns)
else:
warn = FutureWarning if reduction_func == "mad" else None
with tm.assert_produces_warning(warn, match="The 'mad' method is deprecated"):
expected = df.T.groupby([0, 0, 1]).transform(reduction_func).T
warn = FutureWarning if reduction_func == "mad" else None
with tm.assert_produces_warning(warn, match="The 'mad' method is deprecated"):
expected = df.T.groupby([0, 0, 1]).transform(reduction_func).T
tm.assert_equal(result, expected)


Expand Down

0 comments on commit 3622f15

Please sign in to comment.