Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Panic if training output data is not one-dimensional #218

Merged
merged 1 commit into from
Nov 21, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
19 changes: 19 additions & 0 deletions gp/src/algorithm.rs
Original file line number Diff line number Diff line change
Expand Up @@ -734,6 +734,12 @@ impl<F: Float, Mean: RegressionModel<F>, Corr: CorrelationModel<F>, D: Data<Elem
) -> Result<Self::Object> {
let x = dataset.records();
let y = dataset.targets();
if y.ncols() > 1 {
panic!(
"Multiple outputs not handled, a one-dimensional column vector \
as training output data is expected"
);
}
if let Some(d) = self.kpls_dim() {
if *d > x.ncols() {
return Err(GpError::InvalidValueError(format!(
Expand Down Expand Up @@ -1560,6 +1566,19 @@ mod tests {
assert_abs_diff_eq!(*gp.theta().to_vec(), expected);
}

#[test]
#[should_panic]
fn test_multiple_outputs() {
let xt = array![[0.0], [1.0], [2.0], [3.0], [4.0]];
let yt = array![[0.0, 10.0], [1.0, -3.], [1.5, 1.5], [0.9, 1.0], [1.0, 0.0]];
let _gp = Kriging::params()
.fit(&Dataset::new(xt.clone(), yt.clone()))
.expect("GP fit error");
// println!("theta = {}", gp.theta());
// let xtest = array![[0.1]];
// println!("pred({}) = {}", &xtest, gp.predict(&xtest).unwrap());
}

fn x2sinx(x: &Array2<f64>) -> Array2<f64> {
(x * x) * (x).mapv(|v| v.sin())
}
Expand Down
25 changes: 24 additions & 1 deletion gp/src/sparse_algorithm.rs
Original file line number Diff line number Diff line change
Expand Up @@ -418,6 +418,12 @@ impl<F: Float, Corr: CorrelationModel<F>, D: Data<Elem = F> + Sync>
) -> Result<Self::Object> {
let x = dataset.records();
let y = dataset.targets();
if y.ncols() > 1 {
panic!(
"Multiple outputs not handled, a one-dimensional column vector \
as training output data is expected"
);
}
if let Some(d) = self.kpls_dim() {
if *d > x.ncols() {
return Err(GpError::InvalidValueError(format!(
Expand Down Expand Up @@ -838,7 +844,7 @@ mod tests {
use super::*;

use approx::assert_abs_diff_eq;
use ndarray::Array;
use ndarray::{concatenate, Array};
// use ndarray_npy::{read_npy, write_npy};
use ndarray_npy::write_npy;
use ndarray_rand::rand::SeedableRng;
Expand Down Expand Up @@ -1021,4 +1027,21 @@ mod tests {

save_data(&xt, &yt, &z, &xplot, &sgp_vals, &sgp_vars);
}

#[test]
#[should_panic]
fn test_multiple_outputs() {
let mut rng = Xoshiro256Plus::seed_from_u64(42);
// Generate training data
let nt = 200;
// Variance of the gaussian noise on our training data
let eta2: f64 = 0.01;
let (xt, yt) = make_test_data(nt, eta2, &mut rng);
let yt = concatenate(Axis(1), &[yt.view(), yt.view()]).unwrap();
let n_inducings = 30;

let _sgp = SparseKriging::params(Inducings::Randomized(n_inducings))
.fit(&Dataset::new(xt.clone(), yt.clone()))
.expect("GP fitted");
}
}
8 changes: 8 additions & 0 deletions python/egobox/tests/test_gpmix.py
Original file line number Diff line number Diff line change
Expand Up @@ -119,6 +119,14 @@ def test_kpls_griewank(self):
error = np.linalg.norm(y_pred - y_test) / np.linalg.norm(y_test)
print(" RMS error: " + str(error))

def test_multi_outputs_exception(self):
self.xt = np.array([[0.0, 1.0, 2.0, 3.0, 4.0]]).T
self.yt = np.array(
[[0.0, 10.0], [1.0, -3.0], [1.5, 1.5], [0.9, 1.0], [1.0, 0.0]]
)
with self.assertRaises(BaseException):
egx.Gpx.builder().fit(self.xt, self.yt)


if __name__ == "__main__":
unittest.main()
19 changes: 19 additions & 0 deletions python/egobox/tests/test_sgpmix.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,6 +60,25 @@ def test_sgp_random(self):
print(elapsed)
print(sgp)

def test_sgp_multi_outputs_exception(self):
# random generator for reproducibility
rng = np.random.RandomState(0)

# Generate training data
nt = 200
# Variance of the gaussian noise on our trainingg data
eta2 = [0.01]
gaussian_noise = rng.normal(loc=0.0, scale=np.sqrt(eta2), size=(nt, 1))
xt = 2 * rng.rand(nt, 1) - 1
yt = f_obj(xt) + gaussian_noise
yt = np.hstack((yt, yt))

# Pick inducing points randomly in training data
n_inducing = 30

with self.assertRaises(BaseException):
egx.SparseGpMix(nz=n_inducing, seed=0).fit(xt, yt)


if __name__ == "__main__":
unittest.main()
Loading