Skip to content

Commit

Permalink
[SPIR-V] add convergence region analysis (#78456)
Browse files Browse the repository at this point in the history
This new analysis returns a hierarchical view of the convergence regions
in the given function.
This will allow our passes to query which basic block belongs to which
convergence region, and structurize the code in consequence.

Definition
----------

A convergence region is a CFG with:
 - a single entry node.
 - one or multiple exit nodes (different from LLVM's regions).
 - one back-edge
 - zero or more subregions.

Excluding sub-regions nodes, the nodes of a region can only reference a
single convergence token. A subregion uses a different convergence
token.

Algorithm
---------

This algorithm assumes all loops are in the Simplify form.

Create an initial convergence region for the whole function.
  - the convergence token is the function entry token.
  - the entry is the function entrypoint.
- Exits are all the basic blocks terminating with a return instruction.

Take the function CFG, and process it in DAG order (ignoring
back-edges). If a basic block is a loop header:
 - Create a new region.
- The parent region is the parent's loop region if any, otherwise, the
top level region.
   - The region blocks are all the blocks belonging to this loop.
- For each loop exit: - visit the rest of the CFG in DAG order (ignore
back-edges). - if the region's convergence token is found, add all the
blocks dominated by the exit from which the token is reachable to the
region.
   - continue the algorithm with the loop headers successors.
  • Loading branch information
Keenuts authored Feb 2, 2024
1 parent a768bc6 commit 7b08b43
Show file tree
Hide file tree
Showing 8 changed files with 1,656 additions and 0 deletions.
10 changes: 10 additions & 0 deletions llvm/lib/Target/SPIRV/Analysis/CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,10 @@
add_llvm_component_library(LLVMSPIRVAnalysis
SPIRVConvergenceRegionAnalysis.cpp

LINK_COMPONENTS
Core
Support

ADD_TO_COMPONENT
SPIRV
)
350 changes: 350 additions & 0 deletions llvm/lib/Target/SPIRV/Analysis/SPIRVConvergenceRegionAnalysis.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,350 @@
//===- ConvergenceRegionAnalysis.h -----------------------------*- C++ -*--===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The analysis determines the convergence region for each basic block of
// the module, and provides a tree-like structure describing the region
// hierarchy.
//
//===----------------------------------------------------------------------===//

#include "SPIRVConvergenceRegionAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/InitializePasses.h"
#include "llvm/Transforms/Utils/LoopSimplify.h"
#include <optional>
#include <queue>

#define DEBUG_TYPE "spirv-convergence-region-analysis"

using namespace llvm;

namespace llvm {
void initializeSPIRVConvergenceRegionAnalysisWrapperPassPass(PassRegistry &);
} // namespace llvm

INITIALIZE_PASS_BEGIN(SPIRVConvergenceRegionAnalysisWrapperPass,
"convergence-region",
"SPIRV convergence regions analysis", true, true)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(SPIRVConvergenceRegionAnalysisWrapperPass,
"convergence-region", "SPIRV convergence regions analysis",
true, true)

namespace llvm {
namespace SPIRV {
namespace {

template <typename BasicBlockType, typename IntrinsicInstType>
std::optional<IntrinsicInstType *>
getConvergenceTokenInternal(BasicBlockType *BB) {
static_assert(std::is_const_v<IntrinsicInstType> ==
std::is_const_v<BasicBlockType>,
"Constness must match between input and output.");
static_assert(std::is_same_v<BasicBlock, std::remove_const_t<BasicBlockType>>,
"Input must be a basic block.");
static_assert(
std::is_same_v<IntrinsicInst, std::remove_const_t<IntrinsicInstType>>,
"Output type must be an intrinsic instruction.");

for (auto &I : *BB) {
if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
switch (II->getIntrinsicID()) {
case Intrinsic::experimental_convergence_entry:
case Intrinsic::experimental_convergence_loop:
return II;
case Intrinsic::experimental_convergence_anchor: {
auto Bundle = II->getOperandBundle(LLVMContext::OB_convergencectrl);
assert(Bundle->Inputs.size() == 1 &&
Bundle->Inputs[0]->getType()->isTokenTy());
auto TII = dyn_cast<IntrinsicInst>(Bundle->Inputs[0].get());
assert(TII != nullptr);
return TII;
}
}
}

if (auto *CI = dyn_cast<CallInst>(&I)) {
auto OB = CI->getOperandBundle(LLVMContext::OB_convergencectrl);
if (!OB.has_value())
continue;
return dyn_cast<IntrinsicInst>(OB.value().Inputs[0]);
}
}

return std::nullopt;
}

// Given a ConvergenceRegion tree with |Start| as its root, finds the smallest
// region |Entry| belongs to. If |Entry| does not belong to the region defined
// by |Start|, this function returns |nullptr|.
ConvergenceRegion *findParentRegion(ConvergenceRegion *Start,
BasicBlock *Entry) {
ConvergenceRegion *Candidate = nullptr;
ConvergenceRegion *NextCandidate = Start;

while (Candidate != NextCandidate && NextCandidate != nullptr) {
Candidate = NextCandidate;
NextCandidate = nullptr;

// End of the search, we can return.
if (Candidate->Children.size() == 0)
return Candidate;

for (auto *Child : Candidate->Children) {
if (Child->Blocks.count(Entry) != 0) {
NextCandidate = Child;
break;
}
}
}

return Candidate;
}

} // anonymous namespace

std::optional<IntrinsicInst *> getConvergenceToken(BasicBlock *BB) {
return getConvergenceTokenInternal<BasicBlock, IntrinsicInst>(BB);
}

std::optional<const IntrinsicInst *> getConvergenceToken(const BasicBlock *BB) {
return getConvergenceTokenInternal<const BasicBlock, const IntrinsicInst>(BB);
}

ConvergenceRegion::ConvergenceRegion(DominatorTree &DT, LoopInfo &LI,
Function &F)
: DT(DT), LI(LI), Parent(nullptr) {
Entry = &F.getEntryBlock();
ConvergenceToken = getConvergenceToken(Entry);
for (auto &B : F) {
Blocks.insert(&B);
if (isa<ReturnInst>(B.getTerminator()))
Exits.insert(&B);
}
}

ConvergenceRegion::ConvergenceRegion(
DominatorTree &DT, LoopInfo &LI,
std::optional<IntrinsicInst *> ConvergenceToken, BasicBlock *Entry,
SmallPtrSet<BasicBlock *, 8> &&Blocks, SmallPtrSet<BasicBlock *, 2> &&Exits)
: DT(DT), LI(LI), ConvergenceToken(ConvergenceToken), Entry(Entry),
Exits(std::move(Exits)), Blocks(std::move(Blocks)) {
for (auto *BB : this->Exits)
assert(this->Blocks.count(BB) != 0);
assert(this->Blocks.count(this->Entry) != 0);
}

void ConvergenceRegion::releaseMemory() {
// Parent memory is owned by the parent.
Parent = nullptr;
for (auto *Child : Children) {
Child->releaseMemory();
delete Child;
}
Children.resize(0);
}

void ConvergenceRegion::dump(const unsigned IndentSize) const {
const std::string Indent(IndentSize, '\t');
dbgs() << Indent << this << ": {\n";
dbgs() << Indent << " Parent: " << Parent << "\n";

if (ConvergenceToken.value_or(nullptr)) {
dbgs() << Indent
<< " ConvergenceToken: " << ConvergenceToken.value()->getName()
<< "\n";
}

if (Entry->getName() != "")
dbgs() << Indent << " Entry: " << Entry->getName() << "\n";
else
dbgs() << Indent << " Entry: " << Entry << "\n";

dbgs() << Indent << " Exits: { ";
for (const auto &Exit : Exits) {
if (Exit->getName() != "")
dbgs() << Exit->getName() << ", ";
else
dbgs() << Exit << ", ";
}
dbgs() << " }\n";

dbgs() << Indent << " Blocks: { ";
for (const auto &Block : Blocks) {
if (Block->getName() != "")
dbgs() << Block->getName() << ", ";
else
dbgs() << Block << ", ";
}
dbgs() << " }\n";

dbgs() << Indent << " Children: {\n";
for (const auto Child : Children)
Child->dump(IndentSize + 2);
dbgs() << Indent << " }\n";

dbgs() << Indent << "}\n";
}

class ConvergenceRegionAnalyzer {

public:
ConvergenceRegionAnalyzer(Function &F, DominatorTree &DT, LoopInfo &LI)
: DT(DT), LI(LI), F(F) {}

private:
bool isBackEdge(const BasicBlock *From, const BasicBlock *To) const {
assert(From != To && "From == To. This is awkward.");

// We only handle loop in the simplified form. This means:
// - a single back-edge, a single latch.
// - meaning the back-edge target can only be the loop header.
// - meaning the From can only be the loop latch.
if (!LI.isLoopHeader(To))
return false;

auto *L = LI.getLoopFor(To);
if (L->contains(From) && L->isLoopLatch(From))
return true;

return false;
}

std::unordered_set<BasicBlock *>
findPathsToMatch(LoopInfo &LI, BasicBlock *From,
std::function<bool(const BasicBlock *)> isMatch) const {
std::unordered_set<BasicBlock *> Output;

if (isMatch(From))
Output.insert(From);

auto *Terminator = From->getTerminator();
for (unsigned i = 0; i < Terminator->getNumSuccessors(); ++i) {
auto *To = Terminator->getSuccessor(i);
if (isBackEdge(From, To))
continue;

auto ChildSet = findPathsToMatch(LI, To, isMatch);
if (ChildSet.size() == 0)
continue;

Output.insert(ChildSet.begin(), ChildSet.end());
Output.insert(From);
if (LI.isLoopHeader(From)) {
auto *L = LI.getLoopFor(From);
for (auto *BB : L->getBlocks()) {
Output.insert(BB);
}
}
}

return Output;
}

SmallPtrSet<BasicBlock *, 2>
findExitNodes(const SmallPtrSetImpl<BasicBlock *> &RegionBlocks) {
SmallPtrSet<BasicBlock *, 2> Exits;

for (auto *B : RegionBlocks) {
auto *Terminator = B->getTerminator();
for (unsigned i = 0; i < Terminator->getNumSuccessors(); ++i) {
auto *Child = Terminator->getSuccessor(i);
if (RegionBlocks.count(Child) == 0)
Exits.insert(B);
}
}

return Exits;
}

public:
ConvergenceRegionInfo analyze() {
ConvergenceRegion *TopLevelRegion = new ConvergenceRegion(DT, LI, F);
std::queue<Loop *> ToProcess;
for (auto *L : LI.getLoopsInPreorder())
ToProcess.push(L);

while (ToProcess.size() != 0) {
auto *L = ToProcess.front();
ToProcess.pop();
assert(L->isLoopSimplifyForm());

auto CT = getConvergenceToken(L->getHeader());
SmallPtrSet<BasicBlock *, 8> RegionBlocks(L->block_begin(),
L->block_end());
SmallVector<BasicBlock *> LoopExits;
L->getExitingBlocks(LoopExits);
if (CT.has_value()) {
for (auto *Exit : LoopExits) {
auto N = findPathsToMatch(LI, Exit, [&CT](const BasicBlock *block) {
auto Token = getConvergenceToken(block);
if (Token == std::nullopt)
return false;
return Token.value() == CT.value();
});
RegionBlocks.insert(N.begin(), N.end());
}
}

auto RegionExits = findExitNodes(RegionBlocks);
ConvergenceRegion *Region = new ConvergenceRegion(
DT, LI, CT, L->getHeader(), std::move(RegionBlocks),
std::move(RegionExits));
Region->Parent = findParentRegion(TopLevelRegion, Region->Entry);
assert(Region->Parent != nullptr && "This is impossible.");
Region->Parent->Children.push_back(Region);
}

return ConvergenceRegionInfo(TopLevelRegion);
}

private:
DominatorTree &DT;
LoopInfo &LI;
Function &F;
};

ConvergenceRegionInfo getConvergenceRegions(Function &F, DominatorTree &DT,
LoopInfo &LI) {
ConvergenceRegionAnalyzer Analyzer(F, DT, LI);
return Analyzer.analyze();
}

} // namespace SPIRV

char SPIRVConvergenceRegionAnalysisWrapperPass::ID = 0;

SPIRVConvergenceRegionAnalysisWrapperPass::
SPIRVConvergenceRegionAnalysisWrapperPass()
: FunctionPass(ID) {}

bool SPIRVConvergenceRegionAnalysisWrapperPass::runOnFunction(Function &F) {
DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();

CRI = SPIRV::getConvergenceRegions(F, DT, LI);
// Nothing was modified.
return false;
}

SPIRVConvergenceRegionAnalysis::Result
SPIRVConvergenceRegionAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
Result CRI;
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
auto &LI = AM.getResult<LoopAnalysis>(F);
CRI = SPIRV::getConvergenceRegions(F, DT, LI);
return CRI;
}

AnalysisKey SPIRVConvergenceRegionAnalysis::Key;

} // namespace llvm
Loading

0 comments on commit 7b08b43

Please sign in to comment.