Skip to content
forked from rstrudel/nmprepr

[CoRL2020] Learning obstacle representations for neural motion planning

License

Notifications You must be signed in to change notification settings

rcremese/nmprepr

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Learning Obstacle Representations for Neural Motion Planning

Robin Strudel, Ricardo Garcia, Justin Carpentier, Jean-Paul Laumond, Ivan Laptev, Cordelia Schmid
CoRL 2020

Table of Content

Cite

Please cite our work if you use our code or compare to our approach

@inproceedings{strudelnmp2020,
title={Learning Obstacle Representations for Neural Motion Planning},
author={R. {Strudel} and R. {Garcia} and J. {Carpentier} and J.P. {Laumond} and I. {Laptev} and C. {Schmid}},
journal={Proceedings of Conference on Robot Learning (CoRL)},
year={2020}
}

Setup

Download the code

git clone https://github.com/rstrudel/nmprepr
cd nmprepr

To create a new conda environment containing dependencies

conda env create -f environment.yml
conda activate nmprepr

To update a conda environment with dependencies

conda env update -f environment.yml

Train

Narrow passages

To train a planning policy on 2D environments with narrow passages

python -m nmp.train Narrow-64Pts-LocalSurfaceNormals-v0 narrow --horizon 50 --seed 0

3D environments

To train a planning policy for the Sphere

python -m nmp.train Sphere-Boxes-64Pts-Rays-v0 sphere_boxes --horizon 80 --seed 0

To train planning policies for the S-Shape

python -m nmp.train SShape-Boxes-64Pts-Rays-v0 sshape_boxes --horizon 80 --seed 0

Monitor

You can monitor experiments with

tensorboard --logdir=/path/to/experiment

Run

Launch gepetto-gui in a separate terminal

gepetto-gui

Run a planning policy for the S-Shape and visualize it with gepetto-gui

python -m nmp.run SShape-Boxes-64Pts-Rays-v0 --exp-name log_dir/params.pkl --seed 100 --horizon 80

Evaluate the success rate of a policy on 100 episodes

python -m nmp.run SShape-Boxes-64Pts-Rays-v0 --exp-name log_dir/params.pkl --seed 100 --horizon 80 --episodes 100

Logging

By default the checkpointing will be in your home directory. You can change it by defining a CHECKPOINT environment variable. Add the following to your .bashrc file to change the logging directory.

export CHECKPOINT=/path/to/checkpoints

About

[CoRL2020] Learning obstacle representations for neural motion planning

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%