Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[tune] a tiny ptl example #11497

Merged
merged 8 commits into from
Oct 23, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 5 additions & 5 deletions .travis.yml
Original file line number Diff line number Diff line change
Expand Up @@ -276,7 +276,7 @@ matrix:
env:
- RLLIB_TESTING=1 RLLIB_QUICK_TRAIN_AND_MISC_TESTS=1
# TODO (sven): Remove this after fixing rllib tests num_cpus.
- RAY_USE_MULTIPROCESSING_CPU_COUNT=1
- RAY_USE_MULTIPROCESSING_CPU_COUNT=1
- PYTHON=3.6
- TF_VERSION=2.1.0
- TFP_VERSION=0.8
Expand All @@ -297,7 +297,7 @@ matrix:
env:
- RLLIB_TESTING=1 RLLIB_EXAMPLE_DIR_TESTS=1
# TODO (sven): Remove this after fixing rllib tests num_cpus.
- RAY_USE_MULTIPROCESSING_CPU_COUNT=1
- RAY_USE_MULTIPROCESSING_CPU_COUNT=1
- PYTHON=3.6
- TF_VERSION=2.1.0
- TFP_VERSION=0.8
Expand All @@ -318,7 +318,7 @@ matrix:
env:
- RLLIB_TESTING=1 RLLIB_TESTS_DIR_TESTS_A_TO_L=1
# TODO (sven): Remove this after fixing rllib tests num_cpus.
- RAY_USE_MULTIPROCESSING_CPU_COUNT=1
- RAY_USE_MULTIPROCESSING_CPU_COUNT=1
- PYTHON=3.6
- TF_VERSION=2.1.0
- TFP_VERSION=0.8
Expand All @@ -336,7 +336,7 @@ matrix:
env:
- RLLIB_TESTING=1 RLLIB_TESTS_DIR_TESTS_M_TO_Z=1
# TODO (sven): Remove this after fixing rllib tests num_cpus.
- RAY_USE_MULTIPROCESSING_CPU_COUNT=1
- RAY_USE_MULTIPROCESSING_CPU_COUNT=1
- PYTHON=3.6
- TF_VERSION=2.1.0
- TFP_VERSION=0.8
Expand All @@ -357,7 +357,7 @@ matrix:
- PYTHON=3.6
- TF_VERSION=2.2.0
- TFP_VERSION=0.8
- TORCH_VERSION=1.5
- TORCH_VERSION=1.6
- PYTHONWARNINGS=ignore
install:
- . ./ci/travis/ci.sh init RAY_CI_TUNE_AFFECTED
Expand Down
7 changes: 6 additions & 1 deletion doc/source/tune/examples/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -44,10 +44,15 @@ PyTorch Examples
~~~~~~~~~~~~~~~~

- :doc:`/tune/examples/mnist_pytorch`: Converts the PyTorch MNIST example to use Tune with the function-based API. Also shows how to easily convert something relying on argparse to use Tune.
- :doc:`/tune/examples/mnist_pytorch_lightning`: Uses `Pytorch Lightning <https://github.com/PyTorchLightning/pytorch-lightning>`_ to train a MNIST model. This example utilizes the Ray Tune-provided :ref:`PyTorch Lightning callbacks <tune-integration-pytorch-lightning>`. See also :ref:`this tutorial for a full walkthrough <tune-pytorch-lightning>`.
- :doc:`/tune/examples/mnist_pytorch_trainable`: Converts the PyTorch MNIST example to use Tune with Trainable API. Also uses the HyperBandScheduler and checkpoints the model at the end.
- :doc:`/tune/examples/ddp_mnist_torch`: An example showing how to use DistributedDataParallel with Ray Tune. This enables both distributed training and distributed hyperparameter tuning.

Pytorch Lightning Examples
~~~~~~~~~~~~~~~~~~~~~~~~~~

- :doc:`/tune/examples/mnist_ptl_mini`: A minimal example of using `Pytorch Lightning <https://github.com/PyTorchLightning/pytorch-lightning>`_ to train a MNIST model. This example utilizes the Ray Tune-provided :ref:`PyTorch Lightning callbacks <tune-integration-pytorch-lightning>`. See also :ref:`this tutorial for a full walkthrough <tune-pytorch-lightning>`.
- :doc:`/tune/examples/mnist_pytorch_lightning`: A comprehensive example using `Pytorch Lightning <https://github.com/PyTorchLightning/pytorch-lightning>`_ to train a MNIST model. This example showcases how to use various search optimization techniques. It utilizes the Ray Tune-provided :ref:`PyTorch Lightning callbacks <tune-integration-pytorch-lightning>`. See also :ref:`this tutorial for a full walkthrough <tune-pytorch-lightning>`.


XGBoost Example
~~~~~~~~~~~~~~~
Expand Down
6 changes: 6 additions & 0 deletions doc/source/tune/examples/mnist_ptl_mini.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
:orphan:

mnist_ptl_mini
~~~~~~~~~~~~~~

.. literalinclude:: /../../python/ray/tune/examples/mnist_ptl_mini.py
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Rename to mnist_pytorch_lightning_mini.py for better SEO?

9 changes: 9 additions & 0 deletions python/ray/tune/BUILD
Original file line number Diff line number Diff line change
Expand Up @@ -475,6 +475,15 @@ py_test(
args = ["--smoke-test"]
)

py_test(
name = "mnist_ptl_mini",
size = "medium",
srcs = ["examples/mnist_ptl_mini.py"],
deps = [":tune_lib"],
tags = ["exclusive", "example", "pytorch"],
args = ["--smoke-test"]
)

py_test(
name = "mnist_pytorch_trainable",
size = "small",
Expand Down
117 changes: 117 additions & 0 deletions python/ray/tune/examples/mnist_ptl_mini.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,117 @@
import torch
from torch.nn import functional as F
import pytorch_lightning as pl
from pl_bolts.datamodules import MNISTDataModule
import os
from ray.tune.integration.pytorch_lightning import TuneReportCallback

import tempfile
from ray import tune


class LightningMNISTClassifier(pl.LightningModule):
def __init__(self, config, data_dir=None):
super(LightningMNISTClassifier, self).__init__()

self.data_dir = data_dir or os.getcwd()
self.lr = config["lr"]
layer_1, layer_2 = config["layer_1"], config["layer_2"]

# mnist images are (1, 28, 28) (channels, width, height)
self.layer_1 = torch.nn.Linear(28 * 28, layer_1)
self.layer_2 = torch.nn.Linear(layer_1, layer_2)
self.layer_3 = torch.nn.Linear(layer_2, 10)
self.accuracy = pl.metrics.Accuracy()

def forward(self, x):
batch_size, channels, width, height = x.size()
x = x.view(batch_size, -1)
x = self.layer_1(x)
x = torch.relu(x)
x = self.layer_2(x)
x = torch.relu(x)
x = self.layer_3(x)
x = torch.log_softmax(x, dim=1)
return x

def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=self.lr)

def training_step(self, train_batch, batch_idx):
x, y = train_batch
logits = self.forward(x)
loss = F.nll_loss(logits, y)
acc = self.accuracy(logits, y)
self.log("ptl/train_loss", loss)
self.log("ptl/train_accuracy", acc)
return loss

def validation_step(self, val_batch, batch_idx):
x, y = val_batch
logits = self.forward(x)
loss = F.nll_loss(logits, y)
acc = self.accuracy(logits, y)
return {"val_loss": loss, "val_accuracy": acc}

def validation_epoch_end(self, outputs):
avg_loss = torch.stack([x["val_loss"] for x in outputs]).mean()
avg_acc = torch.stack([x["val_accuracy"] for x in outputs]).mean()
self.log("ptl/val_loss", avg_loss)
self.log("ptl/val_accuracy", avg_acc)


def train_mnist_tune(config, data_dir=None, num_epochs=10, num_gpus=0):
model = LightningMNISTClassifier(config, data_dir)
dm = MNISTDataModule(
data_dir=data_dir, num_workers=1, batch_size=config["batch_size"])
metrics = {"loss": "ptl/val_loss", "acc": "ptl/val_accuracy"}
trainer = pl.Trainer(
max_epochs=num_epochs,
gpus=num_gpus,
progress_bar_refresh_rate=0,
callbacks=[TuneReportCallback(metrics, on="validation_end")])
trainer.fit(model, dm)


def tune_mnist(num_samples=10, num_epochs=10, gpus_per_trial=0):
data_dir = os.path.join(tempfile.gettempdir(), "mnist_data_")
# Download data
MNISTDataModule(data_dir=data_dir).prepare_data()

config = {
"layer_1": tune.choice([32, 64, 128]),
"layer_2": tune.choice([64, 128, 256]),
"lr": tune.loguniform(1e-4, 1e-1),
"batch_size": tune.choice([32, 64, 128]),
}

trainable = tune.with_parameters(
train_mnist_tune,
data_dir=data_dir,
num_epochs=num_epochs,
num_gpus=gpus_per_trial)
tune.run(
trainable,
resources_per_trial={
"cpu": 1,
"gpu": gpus_per_trial
},
metric="loss",
mode="min",
config=config,
num_samples=num_samples,
name="tune_mnist")


if __name__ == "__main__":
import argparse

parser = argparse.ArgumentParser()
parser.add_argument(
"--smoke-test", action="store_true", help="Finish quickly for testing")
args, _ = parser.parse_known_args()

if args.smoke_test:
tune_mnist(num_samples=1, num_epochs=1, gpus_per_trial=0)
else:
tune_mnist(num_samples=10, num_epochs=10, gpus_per_trial=0)
3 changes: 2 additions & 1 deletion python/ray/tune/examples/pbt_dcgan_mnist/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -185,7 +185,8 @@ def train(netD, netG, optimG, optimD, criterion, dataloader, iteration, device,
netD.zero_grad()
real_cpu = data[0].to(device)
b_size = real_cpu.size(0)
label = torch.full((b_size, ), real_label, device=device)
label = torch.full(
(b_size, ), real_label, dtype=torch.float, device=device)
output = netD(real_cpu).view(-1)
errD_real = criterion(output, label)
errD_real.backward()
Expand Down
1 change: 1 addition & 0 deletions python/requirements_tune.txt
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@ nevergrad
optuna
pytest-remotedata>=0.3.1
pytorch-lightning
pytorch-lightning-bolts
scikit-optimize
sigopt
smart_open
Expand Down